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Chapter 1:  Introduction 

Chapter 1 

Introduction 

Object detection and recognition is one of the most important research areas in 
computer vision and pattern recognition.  It has many applications in target 
recognition, video surveillance, etc.  

The major task of object detection is to locate and extract regions that may 
contain objects in an image.  It is an important intermediate step to object 
recognition.  The extracted regions are called regions-of-interest (ROIs) or object 
chips.  ROI extraction is very important to object recognition, since the size of an 
image is usually large, leading to the heavy computational burden of processing 
the whole image.  By extracting ROIs, the computational cost of object 
recognition is greatly reduced, thus improving the recognition efficiency.  This 
advantage is particularly useful to real-time applications, where the recognition 
speed is of prime importance.  Also, by extracting ROIs, the recognition system 
can focus on the extracted regions that may contain potential objects and this can 
be very helpful in improving the recognition accuracy.  Usually, in order to 
increase the probability of object detection, some false alarm ROIs, which don’t 
contain an object, but a natural clutter or a man-made clutter, are allowed to pass 
object detection phase. 

The task of object recognition is to reject the false alarm ROIs and recognize the 
kinds of objects contained in the ROIs.  It is actually a signal-to-symbol problem 
of labeling perceived signals with one or more symbols [1].  A solution to this 
problem takes images or the features extracted from ROI images as input and 
outputs one or more symbols which are the labels of the objects in the images.  
Sometimes, the symbols may further represent the pose of the objects or the 
relations between different objects.  These symbols are intended to capture some 
useful aspects of the input and in turn, permit some high level reasoning on the 
perceived signals. 

As well known, object detection and recognition is really not an easy task.  The 
quality of detection and recognition is heavily dependent on the kind and quality 
of features extracted from an image.  The features used to represent an object are 
the key to the object detection and recognition.  If useful features with 
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good quality are unavailable to build an efficient representation of an object, the 
good detection and recognition results cannot be achieved no matter what 
detection and recognition algorithms are used.  However, in most real images, 
there are always a variety of noises, which make the extraction of features 
difficult.  More importantly, there are many kinds of features that can be 
extracted, what are the appropriate features for the current detection and 
recognition task or how to synthesize composite features particularly useful to the 
detection and recognition from the primitive features extracted from an image?  
There is no easy answer to these questions and the solutions are largely dependent 
on the intuitive instinct, knowledge, previous experience and even the bias of 
human image experts. 

In recent years, with the advent of newer, much improved and inexpensive imag-
ing technologies and the rapid expanding of the Internet, more and more images 
are becoming available.  Recent developments in image collection platforms pro-
duce far more imagery than the declining ranks of image analysts are capable of 
handling due to the speed limit of human being.  Relying entirely on human im-
age experts to perform image analysis, processing and classification becomes 
more and more unrealistic.  Building object detection and recognition systems to 
take advantage of the speed of computer is a viable and important solution to the 
increasing need of processing a large quantity of images efficiently. 

Currently most of the object detection and recognition systems are manually 
developed and maintained by human experts.  This traditional approach requires a 
human expert to select or synthesize a set of features to be used in detection and 
recognition.  However, handcrafting a set of features requires human ingenuity 
and insight into the objects to be detected and recognized since it is very difficult 
to identify a set of features that characterize a complex set of objects to be 
encountered in the real-world application.  Typically, many features are explored 
before object detection and recognition systems can be built.  Many of these 
features may be correlated.  To select a set of features which, when acting 
corporately, can give good performance is very time consuming and expensive.  
Sometimes, simple features (also called primitive features) directly extracted from 
images may not be effective in detecting and recognizing objects.  At this point, 
synthesizing composite features useful for the current detection and recognition 
task from those simple ones becomes imperative.  Traditionally, it is the human 
experts who synthesize features to be used.  However, based on their knowledge, 
previous experience and limited by their bias and speed, human experts only 
consider a small number of conventional features and many unconventional 
features are totally ignored.  Sometimes it is those unconventional features that 
yield very good detection and recognition performance. 

Furthermore, after the features are selected or designed by human experts and 
incorporated into a detection/recognition system, they are fixed.  The features 
used by the system are pre-determined and the system cannot generate new 
features useful to the current detection and recognition task on the fly based on 
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the already available features, leading to the inflexibility of the system.  Features 
useful to the detection and recognition of one kind of object or in the processing 
of one kind of imagery may not be effective in the detection and recognition of 
another kind of object or in the processing of another kind of imagery.  Thus, the 
detection and recognition system needs thorough overhaul when applied to other 
types of images different from the one when the system was devised.  This is very 
uneconomical. 

Synthesizing effective new features from primitive features is equivalent to find-
ing good points in the feature combination space where each point represents a 
combination of primitive features.  Similarly, selecting an effective subset of fea-
tures is equivalent to finding good points in the feature subset space where each 
point represents a subset of features.  The feature combination space and feature 
subset space are huge and complicated and it is very difficult to find good points 
in such vast spaces unless one has an efficient search algorithm.  

Hill climbing, gradient decent and simulated annealing (also called stochastic hill 
climbing) are widely used search algorithms.  Hill climbing and gradient decent 
are efficient in exploring a unimodal space, but they are not suitable for finding 
global optimal points in a multi-modal space due to their high probability of being 
trapped in local optima.  Thus, if the search space is a complicated and multi-
modal space, they are unlikely to yield good search results.  Simulated annealing 
has the ability to jump out of local optimal points, but it is heavily dependent on 
the starting point.  If the starting point is not appropriately placed, it takes a long 
time, or even impossible, for simulated annealing to reach good points.  Further 
more, in order to apply simulated annealing algorithm, the neighborhood of a 
point must be defined and the neighboring points should be somewhat similar.  
This requires some knowledge about the search space and it also requires the 
smoothness of the search space.  

It is very difficult, if not impossible, to define the neighborhood of a point in the 
huge and complicated feature combination and feature subset spaces, since similar 
feature combination and similar feature subset may have very different object 
detection and recognition performances.  Due to the lack of knowledge about 
these search spaces, genetic programming (GP) and genetic algorithm (GA) are 
employed in this report, since in order to apply GP, GA and LGP (Linear Genetic 
Programming), all that one needs to know are how to define individuals, how to 
define crossover and mutation operations on the individuals and how to evaluate 
individuals.  GP, GA and LGP are very much capable of exploring huge 
complicated multi-modal spaces with unknown structures [18].  Maintaining a 
large population of individuals as multiple searching points, GP, GA and LGP 
explore the search spaces along different directions concurrently.  With multiple 
searching points and the crossover and mutation operations’ ability to 
immediately move a searching point from one portion of the search space to 
another far away portion, GP and GA are less likely to be trapped at local optimal 
points.  All these characteristics greatly enhance the probability of finding global 
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optimal points, although they cannot guarantee the finding of global optima.  GP 
and GA are not random search algorithms.  They are guided by the fitness of the 
individuals in the population.  As search proceeds, the population is gradually 
adapted to the portion of the search space containing good points. 

In this report, the techniques necessary to the automatic design of object detection 
and recognition systems are investigated.  Here, the object detection and 
recognition system itself is the theme and the efficacy of evolutionary learning 
algorithms such as genetic programming, genetic algorithms and linear genetic 
programming in the feature generation and selection is studied.  The advantage of 
incorporating learning is to avoid the time consuming process of feature selection 
and generation and automatically explore many unconventional features.  Some 
unconventional features yield exceptionally good results in some cases, 
overcoming human expert’s limitation of concentrating only on a small number of 
conventional features.  The resulting systems are able to automatically generate 
features on the fly and cleverly select a good subset of features according to the 
types of object and images.  The goal is to lower the cost of designing object 
detection and recognition systems and build more robust and flexible systems 
with human-competitive performance. 

Chapter 2 discusses synthesizing composite features for object detection.  Genetic 
programming (GP) is applied to the learning of composite features based on 
primitive features and primitive image processing operations.  The primitive 
features and primitive image processing operations are domain-independent, not 
specific to any kind of imagery so that the proposed feature synthesis approach to 
be applied to a wide variety of images.   

Chapter 3 concentrates on improving the efficiency of genetic programming.  A 
fitness function based on the minimum description length (MDL) principle is 
proposed to address the well-known code bloat problem of GP while at the same 
time avoiding severe restriction on the GP search.  The MDL fitness function 
incorporates the size of a composite operator into the fitness evaluation process to 
prevent it from growing too large, reducing possibility of overfitting during 
training and the computational expenses during testing.  The smart crossover and 
smart mutation are proposed to identify the effective components of a composite 
operator and keep them from being disrupted by subsequent crossover and 
mutation operations to further improve the efficiency of GP.   

In Chapter 4, genetic algorithm (GA) is applied to feature selection for 
distinguishing objects from natural clutter.  Usually, GA is driven by a fitness 
function based on the performance of selected features.  To achieve excellent 
performance during training, GA may select a large number of features.  
However, a large number features with excellent performance on training data 
may not perform well on unseen testing data due to the overfitting.  Also, 
selecting more features means heavier computational burden during testing.  In 
order to overcome this problem, an MDL-based fitness function is designed to 
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drive GA.  With MDL-based function incorporating the number of features 
selected into the fitness evaluation process, a small set of features is selected to 
achieve satisfactory performance during both training and testing.   

Chapter 5 presents a method of learning composite feature vectors for object 
recognition. Coevolutionary genetic programming (CGP) is used to synthesize 
composite feature vectors based on the primitive features directly extracted from 
images. The experimental results using real SAR images show that CGP can 
evolve composite features that are more effective than the primitive features upon 
which they are built.   

Chapter 6 presents linear genetic programming (LGP) in a cooperative 
coevolution framework for feature synthesis for object recognition.  It provides a 
comparison between LGP and the standard genetic algorithm.   

Chapter 7 provides further details and extends the ideas of chapter 6 and shows 
the results on eight classes of MSTAR SAR data.   

Finally, Chapter 8 provides conclusions of this work. 
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Chapter 2 

Learning Composite Features for 
Object Detection Using Genetic 
Programming 

Designing automatic object detection systems is one of the important research 
areas in computer vision and pattern recognition [2, 3].  The major task of object 
detection is to locate and extract regions of an image that may contain potential 
objects so that the other parts of the image can be ignored.  It is an intermediate 
step to object recognition and the regions extracted during detection are called 
regions-of-interest (ROIs).  However, the quality of object detection is dependent 
on the type and quality of features extracted from an image.  There are many 
features that can be extracted.  The question is what are the appropriate features or 
how to synthesize features, particularly useful for detection, from the primitive 
features extracted from images.  The answers to these questions are largely 
dependent on the intuitive instinct, knowledge, previous experience and even the 
bias of algorithm designers and experts in object detection by computer. 

In this chapter, the effectiveness of genetic programming (GP) in synthesizing 
composite features, which are the output of composite operators, for object 
detection is investigated.  A composite operator consists of primitive operators 
and primitive feature images.  It can be viewed as a way of combining primitive 
operations on images.  The basic approach is to apply a composite operator on the 
original image or primitive feature images generated from the original one; then 
the output image of the composite operator, called composite feature image, is 
segmented to obtain a binary image or mask; finally, the binary mask is used to 
extract the region containing the object from the original image.  The individuals 
in our GP based learning are composite operators represented by binary tree 
whose internal nodes are the pre-specified primitive operators and the leaf nodes 
are the original image or the primitive feature images.  The primitive feature 
images are pre-defined, and they are not the output of the pre-specified primitive 
operators.
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2.1 Motivation 
In most imaging applications, human experts design an approach to detect 
potential objects in images.  The approach can often be dissected into some 
primitive operations on the original image or a set of related feature images 
obtained from the original one.  It is the expert who, relying on his/her rich 
experience, figures out a smart way to combine these primitive operations to 
achieve good detection results.  The task of synthesizing a good approach is 
equivalent to finding a good point in the space of composite operators formed by 
the combination of primitive operations. 

Unfortunately, the ways of combining primitive operations are almost infinite.  
Limited by their knowledge, bias and speed, the human experts can only try a 
very limited number of conventional combinations, exploring just a very small 
portion of the composite operator space.  Many unconventional combinations are 
regarded as nonsense, leaving a large portion of the composite operator space 
untouched.  GP, however, may try many unconventional ways of combining 
primitive operations that may never be imagined by a human expert.  Although 
these unconventional combinations are very difficult, if not impossible, to be 
explained by domain experts, in some cases, it is these unconventional 
combinations that yield exceptionally good detection results.  In addition, the 
inherent parallelism of GP and the high speed of current computers allow the 
portion of the search space explored by GP to be much larger than that by human 
experts, enhancing the probability of finding an effective composite operator.  
The search performed by GP is not a random search.  It is guided by the fitness of 
composite operators in the population.  As the search proceeds, GP gradually 
shifts the population to the portion of the space containing good composite 
operators. 

2.2 Related Research 
Genetic programming, an extension of genetic algorithm, was first proposed by 
Koza [4] and has been used in image processing, object detection and object 
recognition.  Harris et al. [5] applied GP to the production of high performance 
edge detectors for 1D signals and image profiles.  The method is also extended to 
the development of practical edge detectors for use in image processing and 
machine vision.  Poli [6] used GP to develop effective image filters to enhance 
and detect features of interest or to build pixel-classification-based segmentation 
algorithms.  Bhanu and Lin [7] used GP to learn composite operators for object 
detection.  Their initial experimental results showed that GP is a viable way of 
synthesizing composite operators from primitive operations for object detection.  
Stanhope and Daida [8] used GP to generate rules for target/clutter classification 
and rules for the identification of objects.  To perform these tasks, previously 
defined feature sets are generated on various images and GP is used to select 
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relevant features for analyzing these features.  Howard et al. [9] applied GP to 
automatic detection of ships in low-resolution SAR imagery by evolving 
detectors.  Roberts and Howard [10] used GP to develop automatic object 
detectors in infrared images.  

Unlike the work of Stanhope and Daida [8], Howard et al. [9] and Roberts and 
Howard [10], the input and output of each node of the tree in our system are 
images, not real numbers.  The primitive features defined in this chapter are more 
general and easier to compute than those used in [8, 9].  Unlike my previous work 
[7], the training in this chapter is not performed on a whole image, but on the 
selected regions of an image to greatly reduce the training time.  Of course, 
training regions must be carefully selected and represent the characteristics of the 
training image [11].  Also, two other types of mutation are added to further 
increase the diversity of the population.  Finally, more primitive feature images 
are employed.  The primitive operators and primitive features designed in this 
chapter are very basic and domain-independent, not specific to a kind of imagery.  
Thus, the system and methodology can be applied to a wide variety of images 
such as synthetic aperture radar (SAR), infrared (IR) and RGB color video 
images. 

2.3 Technical Approach 
In the GP based approach of this report, individuals are composite operators 
represented by binary trees.  The search space of GP is the space of all possible 
composite operators.  The space is very large.  To illustrate this, consider only a 
special kind of binary tree, where each tree has exactly 29 internal nodes and one 
leaf node and each internal node has only one child.  For 17 primitive operators 
and only one primitive feature image, the total number of such trees is 1729.  It is 
extremely difficult to find good composite operators from this vast space unless 
one has a smart search strategy. 

2.3.1 Design Considerations 
There are five major design considerations, which involve determining the set of 
terminals, the set of primitive operators, the fitness measure, the parameters for 
controlling the evolutionary run, and the criterion for terminating a run. 

• The set of terminals:  The set of terminals used in this chapter are sixteen 
primitive feature images generated from the original image:  the first one is the 
original image; the others are mean, deviation, maximum, minimum and median 
images obtained by applying templates of sizes 3×3, 5×5 and 7×7, as shown in 
Table 2.1.  These images are the input to composite operators.  GP determines 
which operations are applied on them and how to combine the results.  To get the 
mean image, a template is translated across the original image and the average 
pixel value of the pixels covered by the template replaces the pixel value of the 
pixel covered by the central cell of the template.  To get the deviation image, the 
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pixel value difference between the pixel in the original image and its 
corresponding pixel in the mean image is computed.  To get maximum, minimum 
and median images, a template is translated across the original image and the 
maximum, minimum and median pixel values of the pixels covered by the 
template replace the pixel value of the pixel covered by the central cell of the 
template, respectively. 

v

 
 

 Table 2.1. Sixteen primitive feature images used as the set of terminal. 

No. Primitive 
feature 
image 

description No. Primitive 
feature 
image 

description 

0 PFIM0 Original image 8 PFIM8 5×5 maximum image 
1 PFIM1 3×3 mean image 9 PFIM9 7×7 maximum image 
2 PFIM2 5×5 mean image 10 PFIM10 3×3 minimum image 
3 PFIM3 7×7 mean image 11 PFIM11 5×5 minimum image 
4 PFIM4 3×3 deviation image 12 PFIM12 7×7 minimum image 
5 PFIM5 5×5 deviation image 13 PFIM13 3×3 median image 
6 PFIM6 7×7 deviation image 14 PFIM14 5×5 median image 
7 PFIM7 3×3 maximum image 15 PFIM15 7×7 median image 

 

 

 

 

 

 

• The set of primitive operators:  A primitive operator takes one or two input 
images, performs a primitive operation on them and stores the result in a resultant 
image.  Currently, 17 primitive operators are used by GP to evolve composite 
operators, as shown in Table 2.2, where A and B are input images of the same 
size and c is a constant (ranging from –20 to 20) stored in a primitive operator.  
For operators such as ADD, SUB, MUL, etc. that take two images as input, the 
operations are performed on the pixel-by-pixel basis.  In the operators MAX, 
MIN, MED, MEAN and STDV, 3×3, 5×5 or 7×7 neighborhood are used with 
equal probability. 

• The fitness measure:  The fitness value of a composite operator is computed 
in the following way.  Suppose G and G′ are foregrounds in the ground truth 
image and the resultant image of the composite operator respectively.  Let n(X) 
denote the number of pixels within region X, then Fitness = n(G∩G′) / n(G ∪ G′).  
The fitness value is between 0 and 1.  If G and G′ are completely separated, the 
value is 0; if G and G′ are completely overlapped, the value is 1. 

• Parameters and termination:  The key parameters are the population size M, 
the number of generation N, the crossover rate, the mutation rate and the fitness 
threshold.  The GP stops whenever it finishes the pre-specified number of 
generations or whenever the best composite operator in the population has fitness 

alue greater than the fitness threshold. 
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2.3.2 Selection, Crossover and Mutation 
GP searches through the space of composite operator to generate new composite 
operators, which may be better than the previous ones.  By searching through the 
composite operator space, GP adapts the population of composite operators from 
generation to generation and improves the overall fitness of the whole population.  
More importantly, GP may find an exceptionally good composite operator during 
the search.  The search is done by performing selection, crossover and mutation 
operations.  The initial population is randomly generated and the fitness of each 
individual is evaluated. 

• Selection:  The selection operation involves selecting composite operators 
from the current population.  In this chapter, tournament selection is used, where a 
number of individuals are randomly selected from the current population and the 
one with the highest fitness value is copied into the new population.  The size of 
tournament is 5. 

• Crossover:  To perform crossover, two composite operators are selected on 
the basis of their fitness values.  The higher the fitness value, the more likely the 
composite operator is selected for crossover.  These two composite operators are 
called parents.  One internal node in each of these two parents is randomly 
selected, and the two subtrees rooted at these two nodes are exchanged between 
the parents to generate two new composite operators, called offspring.  The 
offspring are composed of subtrees from their parents.  If two composite operators 
are somewhat effective in detection, then some of their parts probably have some 
merit.  The reason that an offspring may be better than the parents is that 
recombining randomly chosen parts of effective composite operators may yield a 
new composite operator that is more effective in detection. 

It is easy to see that the size of one offspring (i.e., the number of nodes in the 
binary tree representing the offspring) may be greater than those of both parents.  
So if we do not control the size of a composite operator by implementing 
crossover in this simple way, the sizes of composite operators will become larger 
and larger as GP proceeds.  This is the well-known code bloat problem of GP.  It 
is a very serious problem, since when the size becomes too large; it will take a 
long time to execute a composite operator, greatly reducing the search speed of 
GP.  Further, large-size composite operators may overfit training data by 
approximating various noisy components of an image.  Although the results on 
the training image may be very good, the performance on unseen testing images 
may be bad.  Also, large composite operators take up a lot of computer memory.  
Due to the finite computer resources and the desire to achieve a good running 
speed (efficiency) of GP, we must limit the size of a composite operator by 
specifying a maximum size.  Currently, a simple method is used to address this 
problem by setting a size limit on the size of a composite operator.  If the size of 
an offspring exceeds the maximum size allowed, the crossover operation is 
performed again until the sizes of both offspring are within the limit.  Although 
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this simple method guarantees that the size of a composite operator won’t exceed 
the size limit, the hard size limit greatly restricts the search performed by GP, 
since after randomly selecting a crossover point in one composite operator, GP 
cannot select some nodes of the other composite operator as crossover points in 
order to guarantee that both offspring won’t exceed the size limit.  Restricting the 
search greatly reduces the efficiency of GP, making it less likely to find good 
composite operators.  In chapter 3, a new fitness function based on minimum 
description length (MDL) principle will be used to incorporate the size of a 
composite operator into the fitness evaluation process to prevent the code bloat 
without imposing severe restriction on the GP search.  The essential idea of 
applying MDL-based fitness function is to find a balance point between the above 
two conflicting factors. 
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7×
16 MEAN (A) Re

or 
17 STDV (A) Re

3×
 

Table 2.2. Seventeen primitive operators. 

Description 
d images A and B. 

btract image B from A. 
ltiply images A and B. 

vide image A by image B (If the pixel in B has value 0, the cor-
ponding pixel in the resultant image takes the maximum pixel 
lue in A). 
e pixel in the resultant image takes the larger pixel value of im-
es A and B.                                                                     
e pixel in the resultant image takes the smaller pixel value of 
ages A and B.                                                                     
rease each pixel value by c.    
crease each pixel value by c.    
ltiply each pixel value by c.    

vide each pixel value by c.    
r each pixel with value v, if v ≥ 0, change its value to v . Oth-
ise, to v−− .  

r each pixel with value v, if v ≥ 0, change its value to ln(v). 
herwise, to –ln(-v). 
place the pixel value by the maximum pixel value in a 3×3, 
5 or 7×7 neighborhood. 
place the pixel value by the minimum pixel value in a 3×3, 5×5 
7×7 neighborhood. 
place the pixel value by the median pixel value in a 3×3, 5×5 or 
7 neighborhood. 
place the pixel value by the average pixel value of a 3×3, 5×5 
7×7 neighborhood. 
place the pixel value by the standard deviation of pixels in a 
3, 5×5 or 7×7 neighborhood. 
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• Mutation:  In order to avoid premature convergence, mutation is introduced 
to randomly change the structure of some individuals to maintain the diversity of 
the population.  Composite operators are randomly selected for mutation.  There 
are three types of mutation invoked with equal probability: 

1. Randomly select a node of the binary tree representing a composite operator 
and replace the subtree rooted at this node, including the node selected, by 
another randomly generated binary tree 

2. Randomly select a node of the binary tree representing a composite operator 
and replace the primitive operator stored in the node with another primitive 
operator of the same number of inputs as the replaced one.  The replacing 
primitive operator is selected at random from all the primitive operators 
with the same number of input as the replaced one. 

3. Randomly select two subtrees within a composite operator and swap them.  
Of course, neither of the two sub-trees can be a sub-tree of the other. 

2.3.3 Steady-state and Generational Genetic Programming 
Both steady-state and generational genetic programming are used in this chapter.  
In steady-state GP, two parent composite operators are selected on the basis of 
their fitness for crossover.  The offspring of this crossover replace a pair of 
composite operators with the smallest fitness values.  The two offspring are 
executed immediately and their fitness values are recorded.  Then another two 
parent composite operators are selected for crossover.  This process is repeated 
until crossover rate is satisfied.  Finally, mutation is applied to the resulting 
population and the mutated composite operators are executed and evaluated.  The 
above cycle is repeated from generation to generation.  In generational GP, two 
composite operators are selected on the basis of their fitness values for crossover 
and generate two offspring.  The two offspring are not put into the current 
population and won’t participate in the following crossover operations on the 
current population.  The above process is repeated until crossover rate is satisfied.  
Then, mutation is applied to the composite operators in the current population and 
the offspring from crossover.  After mutation is done, selection is applied to the 
current population to select some composite operators.  The number of composite 
operators selected must meet the condition that after combining with the 
composite operators from crossover, a new population of the same size as the old 
one is resulted.  Finally, combine the composite operators from crossover with 
those selected from the old population to get a new population and the next 
generation begins.  In addition, an elitism replacement method is adopted to keep 
the best composite operator from generation to generation. 

• Steady-state Genetic Programming: 
0. randomly generate population P of size M and evaluate each composite 

operator in P. 
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1. for gen = 1 to N do   // N is the number of generation 
2. keep the best composite operator in P. 
3. repeat 
4.      select 2 composite operators from P based on  their fitness values for 

crossover. 
5.      select 2 composite operators with the lowest fitness values in P for 

replacement. 
6.      perform crossover operation and let the 2 offspring replace the 2 

composite operators selected for replacement. 
7. execute the 2 offspring and evaluate their fitness values. 
8. until crossover rate is met. 
9. perform mutation on each composite operator with probability of muta-

tion rate and evaluate mutated composite operators. 
10. After crossover and mutation, a new population P’ is generated. 
11. let the best composite operator from population P replace the worst 

composite operator in P’ and let P = P’. 
12. if  the fitness value of the best composite operator in P is above fitness 

threshold value then 
13.    stop. 

endif 
    endfor  // loop 1 
 

• Generational Genetic Programming: 

0. randomly generate populations of size M and evaluate each composite 
operator in P. 

1. for gen = 1 to N do   // N is the number of generation 
2. keep the best composite operator in P. 
3. perform crossover on the composite operators in P until crossover rate 

is satisfied and keep all the offspring  from crossover separately. 
4. perform mutation on the composite operators in P and the offspring  

from crossover with the probability of  mutation rate. 
5. perform selection on P to select some composite operators. The number 

of selected composite operators must be M minus the number of com-
posite operators from crossover. 

6. combine the composite operators from crossover with those selected 
from P  to get a new population P’ of the same size as P. 

7. evaluate offspring from crossover and the mutated composite opera-
tors.  

8. let the best composite operator from P  replace the worst composite op-
erator in P’ and  let P = P’. 

9. if  the fitness of the best composite operator in P is above fitness 
threshold then 

10. stop. 

 13



Chapter 2:  Learning Composite Features for Object Detection Using Genetic Programming 

  endif 
 endfor  // loop 1 
 
 

2.4 Experiments 
Various experiments are performed to test the efficacy of genetic programming in 
extracting regions of interest from real synthetic aperture radar (SAR) images, 
infrared (IR) images and RGB color images.  The size of SAR images is 128×128, 
except the tank SAR images whose size is 80×80, and the size of IR and RGB 
color images is 160×120. GP (in subsections 1.3.1 and 1.3.2) is not applied to a 
whole training image, but only to a region or regions carefully selected from the 
training image, to generate composite operators.  The best-generated composite 
operator is then applied to the whole training image and to some other testing 
images to evaluate it.  The advantage of performing training on a small selected 
region is that it can greatly reduce the training time, making it practical for the GP 
system to be used as a subsystem of other learning systems, which improve the 
efficiency of GP by adapting the parameters of GP system based on its 
performance.  The experiments show that if training regions are carefully selected 
from a training image, the best composite operator generated by GP is effective.  
In the following experiments in sections 1.3.1 and 1.3.2, the parameters are:  
population size (100), the number of generations (70), the fitness threshold value 
(1.0), the crossover rate (0.6), the mutation rate (0.05), the maximum size of 
composite operator (30), and the segmentation threshold (0).  In each experiment, 
GP is invoked ten times with the same parameters and the same training region(s).  
The coordinate of the upper left corner of an image is (0, 0).  The ground truth is 
used only during training; it is not needed during testing.  It is used in testing only 
for evaluating the performance of the composite operator on testing images. 

2.4.1 SAR Images 

Five experiments are performed with real SAR images.  The experimental results 
from one run and the average performance of ten runs are reported in Table 2.3. 
The results of the run in which GP finds the best composite operator among the 
composite operators found in all ten runs are reported.  The first two rows show 
the fitness value of the best composite operator and the population fitness value 
(average fitness value of all the composite operators in the population) on training 
region(s) in the initial and final generations in the selected run.  The numbers in 
the parenthesis in the “fop” columns are the fitness values of the best composite 
operators on the whole training image (numbers with a * superscript) and other 
testing images in their entirety.  The last two rows show the average values of the 
above fitness values over all ten runs.  The regions extracted during the training 
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and testing by the best composite operator from the selected run are shown in the 
following examples. 

• Example 1  Road extraction:  Three images contain road, the first one 
contains horizontal paved road and field (Fig 2.1(a)); the second one contains 
unpaved road and field (Fig 2.8(a)); the third one contains vertical paved road and 
grass (Fig 2.8(d)).  Training is done on the training regions of the training image 
shown in Figure 2.1(a) and testing is performed on the whole training image and 
testing images.  There are two training regions, locating from (5, 19) to (50, 119) 
and from (82, 48) to (126, 124), respectively.  Figure 2.1(b) shows the ground 
truth provided by the user and the training regions.  The white region corresponds 
to the road and only the ground truth in the training regions is used in the 
evaluation during the training.  Figure 2.2 shows the sixteen primitive feature 
images of the training image. 

The generational GP is used to synthesize a composite operator to extract the road 
and the results of the 7th run are reported.  The fitness value of the best composite 
operator in the initial population is 0.60 and the population fitness value is 0.27.  
The fitness value of the best composite operator in the final population is 0.94 and  

 
 
 
 

Table 2.3. The performance on various examples of SAR images. 
(fop = fitness of the best composite operator, fp = fitness of population, *:  indicate finess on 
training images, finitial = fitness in the initial generation, ffinal = fitness in the final population) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Road  Lake  River Field Tank 
 

fop fp fop fp fop fp fop fp fop fp 

finitial 0.60 0.27 0.62 0.30 0.59 0.19 0.52 0.38 0.65 0.17 

 
ffinal 

0.94 
(0.90*, 
0.90, 
0.93) 

0.93 
0.99    

(0.95*, 
0.97) 

0.95
0.89    

(0.72*, 
0.83) 

0.86
0.78    

(0.88*, 
0.81) 

0.77
0.88    

(0.88*, 
0.84) 

0.87 

Ave. 
finitial  0.47 0.26 0.64 0.32 0.49 0.18 0.53 0.38 0.49 0.16 

Ave. 
ffinal 0.82 0.81 0.93 0.92 0.82 0.77 0.73 0.72 0.85 0.83 

 
the population fitness value is 0.93.  Figure 2.1(c) shows the output image of the 
best composite operator on the whole training image and Figure 2.1(d) shows the 
binary image after segmentation.  The output image has both positive pixels in 
brighter shade and negative pixels in darker shade.  Positive pixels belong to the 
region to be extracted.  The fitness value of the extracted ROI is 0.90.  The best 
composite operator has 27 nodes and its depth is 16.  It has five leaf nodes, three 
contain 5×5 median image and the other two contain 7×7 median image.  The 
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median images have less speckle noise, since median filtering is effective in 
eliminating speckle noises.  It is shown in Figure 2.3, where PFIM14 and PFIM15 
 
 
 
 
 
 
 

(c) composite feature 
image  

(d) ROI 
extracted 

(b) ground 
truth  

(a) paved road 
vs. field 

 
 
 Figure 2.1. Training SAR image containing road. 
 
 
 
 
 
 
 
 
 
 
 
 

PFIMPFIMPFIMPFIMPFIMPFIMPFIMPFIM

PFIM15PFIM PFIM1 PFIM1 PFIM1PFIM PFIM1 PFIM1 
 Figure 2.2. Sixteen primitive feature images of training SAR image containing road. 
 
are 5×5 and 7×7 median images, respectively.  Figure 2.4 shows how the average 
fitness of the best composite operators and the average fitness of the populations 
over all the 10 runs change as GP explore the composite operator space.  It is 
obvious that GP gradually shifts the population to the regions of space containing 
good composite operators. 
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Figure 2.4. Fitness versus generation (road 
vs. field).  

Figure 2.3. Learned composite  
operator tree in LISP notation.  
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10 best composite operators are obtained in the initial and final generations of 10 
runs, respectively.  After computing the percentage of each primitive operator and 
primitive feature image among the total number of internal nodes (representing 
primitive operator) and total number of leaf nodes (representing primitive feature 
image) of 10 best composite operators, the utility of these primitive operators and 
primitive feature images in the initial and final populations is obtained, which is 
shown in Figure 2.5.  Compared to those in the final population, the utilities of  
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Figure 2.5. Utility of primitive operators and primitive feature images.  
 

primitive feature images and primitive operators are relatively uniformly distrib-
uted in the initial population.  In the final population, primitive feature images 
PFIM7 (3×3 maximum image) and PFIM15 (7×7 median image) and primitive 
operator MED (primitive operator 15) have the highest frequency of utility.  As 
well known, median filter is effective in eliminating speckle noise in SAR images.  
Figure 2.6 shows the output image of each node of the best composite operator 
shown in Figure 2.3.  The primitive operators in Figure 2.6 are connected by ar-
row.  The operator at the tail of an arrow provides input to the operator at the head 
of the arrow.  After segmenting the output image of a node, the ROI (shown as the 
white region) extracted by the corresponding subtree rooted at the node is ob-
tained.  The extracted ROIs and their fitness values are shown in Figure 2.7.  If an 
output image has positive pixels only (for example, PFIM14 has positive pixels 
only), everything is extracted and the fitness is 0.25.  

The composite operator obtained in the above training is applied to the other two 
real SAR images shown in Figure 2.8(a) and 2.8(d).  Figure 2.8(b) and 2.8(e) 
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show the output of the composite operator and Figure 2.8(c) shows the region ex-
tracted from Figure 2.8(a).  The fitness value of the region is 0.90.  Figure 2.8(f)  
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 Figure 2.6.  Feature images output by the nodes of the best composite operator.  
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shows the region extracted from Figure 2.8(d) and the fitness value of the region, 
which is 0.93. 
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Figure 2.7. ROIs extracted from the output images of the nodes of the best composite 
operator.  (The fitness value is shown for the entire image.) 

 19



Chapter 2:  Learning Composite Features for Object Detection Using Genetic Programming 

 

 
 
 
 

(e) composite 
feature image 

(a) unpaved 
road vs. field 

(f) ROI 
extracted 

(d) paved road 
vs. grass 

(b) composite 
feature image  

(c) ROI 
extracted

 
 
 Figure 2.8. Testing SAR images containing road. 
 

• Example 2  Lake extraction:  Two SAR images contain lake (Fig 2.9(a), 
2.10(a)), the first one contains a lake and field, and the second one contains a lake 
and grass.  Figure 2.9(a) shows the original training image containing lake and 
field and the training region from (85, 85) to (127, 127).  Figure 2.9(b) shows the 
ground truth provided by the user.  The white region corresponds to the lake to be 
extracted.  Figure 2.10(a) shows the image containing lake and grass. 

 

 

 

(c) composite 
feature image 

(a) lake vs. field (b) ground truth  (d) ROI extracted  

 Figure 2.9. Training SAR image containing lake. 
 

The steady-state GP is used to generate the composite operator and the results of 
the 4th run are reported.  The fitness value of the best composite operator in the 
initial population is 0.62 and the population fitness value is 0.30.  The fitness 
value of the best composite operator in the final population is 0.99 and the 
population fitness value is 0.95.  Figure 2.9(c) shows the output image of the best 
composite operator on the whole training image and Figure 2.9(d) shows the 
binary image after segmentation.  The fitness value of the extracted ROI is 0.95.  
The composite operator is applied to the testing image containing lake and grass.  
Figure 2.10(b) shows the output of the composite operator and Figure 2.10(c) 
shows the region extracted.  The fitness of the region is 0.97.  

• Example 3  River extraction:  Two SAR images contain river and field.  
Figure 2.11(a) and 2.11(b) show the original training image and the ground truth 
provided by the user.  The white region in Figure 2.11(b) corresponds to the river 
to be extracted.  The training regions are from (68, 31) to (126, 103) and from (2, 
8) to (28, 74).  The testing SAR image is shown in Figure 2.14(a). 
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The steady-state GP is used to generate composite operators and the results of the 
first run are reported.  The fitness value of the best composite operator in the 
initial population is 0.59 and the population fitness value is 0.19.  The fitness 
value of the best composite operator in the final population is 0.89 and the 
population fitness value is 0.86.  Figure 2.11(c) shows the output image of the 
best composite operator on the whole training image and Figure 2.11(d) shows the 
binary image after segmentation.  The fitness value of the extracted ROI is 0.72.  
The best composite operator has 30 nodes and its depth is 23.  It has four leaf 
nodes, three contain 5×5 mean image and the other one contains 3×3 mean image.   

 

 

 

 

 (b) composite feature 
image  

(a) lake vs. grass (c) ROI extracted 

 
Figure 2.10. Testing SAR image containing lake.  
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Figure 2.11. Training SAR image containing river. 
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Figure 2.12. Learned composite operator  
tree in LISP notation. 

Figure 2.13. Fitness versus generation 
(river vs. field).  

 

There are more than ten MED operators that are very useful in eliminating 
speckle noises.  It is shown in Figure 2.12.  Figure 2.13 shows how the average 
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fitness of the best composite operators and the average fitness of the populations 
over all the 10 runs change as GP explores the composite operator space. 

The composite operator is applied to the testing image containing a river and 
field.  Figure 2.14(b) shows the output of the composite operator and Figure 
2.14(c) shows the region extracted from Figure 2.14(a) and the fitness value of the 
extracted region is 0.83.  There are some islands in the river and these islands 
along with the river around them are not extracted, since the islands look similar 
to the field. 

 

 

 

 
(b) composite feature image   (a) river vs. field (c) ROI extracted 

 Figure 2.14. Testing SAR image containing river. 

• Example 4  Field extraction:  Two SAR images contain field and grass.  
Figure 2.15(a) and 2.15(b) show the original training image and the ground-truth.  
The training regions are from (17, 3) to (75, 61) and from (79, 62) to (124, 122).  
Extracting field from a SAR image containing field and grass is considered as the 
most difficult task among the five experiments, since the grass and field are 
similar to each other and some small regions between grassy areas are actually 
field pixels. 

 

 

 

 
(d) ROI extracted (c) composite 

feature image  
(a) field vs. grass (b) ground truth  
 

Figure 2.15. Training SAR image containing field. 
 

The generational GP was used to generate composite operators and the results 
from the 7th run are reported.  The fitness value of the best composite operator in 
the initial population is 0.52 and the population fitness value is 0.38.  The fitness 
value of the best composite operator in the final population is 0.78 and the 
population fitness value is 0.77.  Figure 2.15(c) shows the output image of the 
best composite operator on the whole training image and Figure 2.15(d) shows the 
binary image after segmentation.  The fitness value of the extracted ROI is 0.88.  
The composite operator is applied to the testing image containing field and grass 
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shown in Figure 2.16(a).  Figure 2.16(b) shows the output of the composite 
operator and Figure 2.16(c) shows the region extracted from Figure 2.16(a).  The 
fitness value of the region is 0.81. 

Example 5  Tank extraction:  In this subsection, GP is applied to synthesize 
features for the detection of military targets and this application is of special 
importance.  The military targets used in this chapter are T72 tanks.  Their SAR 
images are taken under different depression and azimuth angles and the size of the 
images is 80×80.  The training image contains T72 tank under depression angle 
17° and azimuth angle 135°, which is shown in Figure 2.17(a).  The training 
region is from (19, 17) to (68, 66).  The testing SAR image contains a T72 tank  

 

 

 

(b) composite feature image  (a) field vs. grass (c) ROI extracted  
Figure 2.16. Testing SAR image containing field. 

 

under depression angle 20° and azimuth angle 225°, which is shown in Figure 
2.20(a).  The ground-truth is shown in Figure 2.17(b). 

The generational GP is applied to synthesize composite operators for tank 
detection and the results from the 6th run are reported.  The fitness value of the 
best composite operator in the initial population is 0.65 and the population fitness 
value is 0.17.  The fitness value of the best composite operator in the final 
population is 0.88 and the population fitness value is 0.87.  Figure 2.17(c) shows  
 

 

 

 
(b) ground truth (c) composite 

feature image  
(a) T72 tank  (d) ROI extracted 

 

Figure 2.17. Training SAR image containing tank.  

the output image of the best composite operator on the whole training image and 
Figure 2.17(d) shows the binary image after segmentation.  The fitness value of 
the extracted ROI is 0.88.  The best composite operator has 28 nodes and its depth 
is 17.  It has four leaf nodes, two contain the 3×3 minimum image, one contains 
7×7 maximum image and the final one contains 7×7 minimum image.  It is shown 
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in Figure 2.18.  Figure 2.19 shows how the average fitness of the best composite 
operators and the average fitness of the populations over all the 10 runs change as 
GP proceeds. 
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Figure 2.18. Learned composite operator  
tree in LISP notation. 

Figure 2.19. Fitness versus generation  
(T72 tank).  

The composite operator is applied to the testing image containing T72 tank under 
depression angle 20° and azimuth angle 225°.  Figure 2.20(b) shows the output of 
the composite operator and Figure 2.20(c) shows the region corresponding to the 
tank.  The fitness of the extracted ROI is 0.84.  The results show that GP is very 
much capable of synthesizing composite operators for military target detection.  
With more and more SAR images collected by satellites and airplanes, it is 
impractical for human experts to scan each SAR image to find military targets.  
Applying the synthesized composite operators on these images, regions 
containing potential targets can be quickly detected and passed on to an automatic 
target recognition system or human experts for further examination.  
Concentrating on the regions of interest, the human experts and recognition 
systems can perform recognition task more effectively and more efficiently. 

 

 

 

 

 (c) ROI extracted (b) composite feature image  (a) T72 tank  

 Figure 2.20. Testing SAR image containing tank. 

2.4.2 IR and RGB Color Images 

One experiment is performed with IR images and one is performed with RGB 
color images.  The experimental results from one run and the average 
performance of ten runs are reported in Table 2.4.  As in Subsection 2.4.1, the 
results of the run in which GP finds the best composite operator among the 
composite operators found in all the ten runs are reported.  The regions extracted 
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during the training and testing by the best composite operator from the selected 
run are shown in the following examples. 

People extraction in IR images:  In IR images, pixel values correspond to the 
temperature in the scene.  There are four IR images with one used in training and 
the other three used in testing.  Figure 2.21(a) and (b) show the training image and 
the ground truth.  There are two training regions from (59, 9) to (106, 88) and 
from (2, 3) to (21, 82), respectively.  The left training region contains no pixel 
belonging to the person.  The reason for selecting it during training is that there 
are major changes of pixel intensities among the pixels in the region.  Nothing in 
this region should be detected.  The fitness of composite operator on this region is 
defined as one minus the percentage of pixels detected in the region.  If nothing is 

 

 

Table 2.4. The performance on examples of IR and RGB color images. (fop = fitness of the best
composite operator, fp = fitness of population, *:  indicate fitness on training images, finitial = fitness
in the initial generation, ffinal = fitness in the final population) 

IR Image  People Color Image  Car 
 

fop fp fop fp 
finitial 0.53 0.21 0.56 0.19 

ffinal 0.93                   
(0.85*, 0.83, 0.79, 0.85) 0.83 

0.82         
(0.75*, 0.73) 0.79 

Ave. finitial 0.60 0.21 0.43 0.18 
Ave. ffinal 0.89 0.73 0.72 0.70 

 

 

 

 

 

 

 

 

 

 (c) composite 
feature image 

(b) ground truth (d) ROI extracted (a) person  

 Figure 2.21. Training IR image containing person. 

detected, the fitness value is 1.0.  Averaging the fitness values on the two training 
regions, we get the fitness during training.  When the learned composite operator 
is applied to the whole training image, the fitness is computed as a measurement 
of the overlap between the ground truth and the extracted ROI, as we did in the 
previous experiments.  Three testing IR images are shown in Figure 2.24(a), (d) 
and (g). 
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The generational GP is applied to synthesize composite operators for person 
detection and the results from the third run are reported.  The fitness value of the 
best composite operator in the initial population is 0.53 and the population fitness 
value is 0.21.  The fitness value of the best composite operator in the final 
population is 0.93 and the population fitness value is 0.83.  Figure 2.21(c) shows 
the output image of the best composite operator on the whole training image and 
Figure 2.21(d) shows the binary image after segmentation.  The fitness value of 
the extracted ROI is 0.85.  The best composite operator has 20 nodes and its depth 
is 9.  It has five leaf nodes and is shown in Figure 2.22.  Figure 2.23 shows how 
the average fitness of the best composite operators and the average fitness of the 
populations over all the 10 runs change as GP proceeds. 
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Figure 2.22. Learned composite operator 
tree in LISP notation. 

Figure 2.23. Fitness versus generation 
(person).  

 

 

 

 

 

 

 

 

 

 

(f) ROI extracted (e) composite feature image (d) person  

(c) ROI extracted (b) composite feature image (a) person  

(g) person  (h) composite feature image (i) ROI extracted 

 Figure 2.24. Testing IR images containing person. 
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The composite operator is applied to the testing images shown in Figure 2.24.  
Figure 2.24(b), (e) and (h) show the output of the composite operator and Figure 
2.24(c), (f) and (i) show the ROI extracted.  Their fitness values are 0.83, 0.79 and 
0.85 respectively. 

• Car extraction in RGB color image:  GP is applied to learn features to 
detect car in RGB color images.  Unlike previous experiments, the primitive 
feature images in this experiment are RED, GREEN and BLUE planes of RGB 
color image.  Figure 2.25(a), (b) and (c) show the RED, GREEN and BLUE 
planes of the training image.  The ground truth is shown in Figure 2.25(d).  The 
training region is from (21, 3) to (91, 46). 

 

(c) BLUE plane (b) GREEN plane (a) RED plane 

 

 

 

 

 (f) ROI extracted (d) ground truth (e) composite feature image 

Figure 2.25. Training RGB color image containing car.  

The steady-state GP is applied to synthesize composite operators for car detection 
and the results from the 4th run are reported.  The fitness of the best composite 
operator in the initial population is 0.56 and the population fitness is 0.19.  The 
fitness of the best composite operator in the final population is 0.82 and the 
population fitness is 0.79.  Figure 2.25(e) shows the output image of the best 
composite operator on the whole training image and Figure 2.25(f) shows the 
binary image after segmentation.  The fitness value of the extracted ROI is 0.75.  
The best composite operator has 30 nodes and its depth is 18.  It has six leaf nodes  

 

 

 

 

 
Figure 2.26. Learned composite operator 
tree in LISP notation. 
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Figure 2.27. Fitness versus generation (car).  
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with two of them containing RED plane and the others contain BLUE plane.  It is 
shown in Figure 2.26, where PFR means RED plane and PFB means BLUE plane.  
Figure 2.27 shows how the average fitness of the best composite operators and the 
average fitness of the populations over all the 10 runs change as GP proceeds. 

The composite operator is applied to the testing image whose RED plane is shown 
in Figure 2.28(a).  Figure 2.28(b) shows the output of the composite operator and 
Figure 2.28(c) shows the ROI extracted.  The fitness value of extracted ROI is 
0.73. 

 

 

 

 (a) RED plane (c) ROI extracted (b) composite feature image 
 Figure 2.28. Testing RGB color image containing car. 
 

2.4.3 Comparison with Example Region Selection 

In our previous work [7], genetic programming was applied on a whole training 
image, not on carefully selected regions of the training image, to learn composite 
operators for object detection.  The genetic programming running on a whole 
image is called image GP and the genetic programming of this chapter is called 
region GP.  The differences between the method presented here and that in [7] 
are:  

1) Unlike [7] where image GP is used during training, region GP runs on 
carefully selected region(s) in this chapter to reduce the training time.  

2) Only the first mutation type in subsection 2.3.2 and only the first seven 
primitive feature images are used in [7].  With more mutation types and 
more primitive feature images used, the diversity of the composite 
operator population can be further increased. 

The experimental results on REAL SAR images in [7] are reported for the 
purpose of comparison.  The parameters are: population size (100), the number of 
generations (100), the fitness threshold value (1.0), the crossover rate (0.6), the 
mutation rate (0.1), the maximum size (number of internal node) of composite 
operator (30), and the segmentation threshold (0).  In each experiment, GP is 
invoked ten times with the same parameters.  The experimental results from one 
run and the average performance of ten runs are reported in Table 2.5.  We select 
the run in which GP finds the best composite operator among the composite 
operators found in all ten runs to report.  The numbers in the parenthesis in the 
“fop” columns are the fitness values of the best composite operators on the testing 
SAR images. 
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Road extraction:  Figure 2.1(a) shows the training image and Figure 2.8(a), (d) 
show the testing images.  The generational GP is used to generate a composite 
operator to extract the road.  The fitness value of the best composite operator in 
the initial population is 0.47 and the population fitness value is 0.19.  The fitness 
value of the best composite operator in the final population is 0.92 and the 
population fitness value is 0.89.  Figure 2.29(a) shows the output image of the  

 

 

Table 2.5. The performance of genetic programming on various examples of SAR images.  (fop =
fitness of the best composite operator, fp = fitness of population, *:  indicate fitness on training
images, finitial = fitness in the initial generation, ffinal = fitness in the final population) 

 

 

 

 

 

 

 

 

 

Road  Lake  River Field 
 

fop fp fop fp fop fp fop fp 

finitial 0.47 0.19 0.65 0.42 0.43 0.21 0.62 0.44 

ffinal 
0.92*   
(0.92, 
0.89) 0.89 

0.93*    
( 0.92 

) 0.92 
0.74*    

( 0.84 ) 0.68 

0.87*   
( 0.68 

) 0.86 
Ave.  
finitial  0.47 0.18 0.73 0.39 0.37 0.11 0.65 0.41 
Ave.  
ffinal 0.81 0.76 0.92 0.87 0.68 0.58 0.84 0.77 

best composite operator in the final population and Figure 2.29(b) shows the 
extracted ROI.  The composite operator obtained in the above training is applied 
to the two testing SAR images.  Figure 2.29(c) and (d) show the output image of 
the composite operator and the ROI extracted from Figure 2.8(a).  The fitness 
value of the extracted ROI is 0.92.  Figure 2.29(e) and (f) show the output image 
of the composite operator and the ROI extracted from Figure 2.8(d).  The fitness 
value of the extracted ROI is 0.89. 

 

 

 

 

 

 

 

(b) ROI 
extracted 

from Figure 
2.1(a) 

(f) ROI 
extracted 

from Figure 
2.8(d) 

(e) 
composite 

feature 
image  

(d) ROI 
extracted 

from Figure 
2.8(a) 

(c) 
composite 

feature 
image 

(a) 
composite 

feature 
image  

Figure 2.29. Results on SAR images containing road. 
 

Lake extraction:  Figure 2.9(a) shows the training image and Figure 2.10(a) 
shows the testing image.  The steady-state GP is used to generate composite 
operators.  The fitness value of the best composite operator in the initial 
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population is 0.65 and the population fitness value is 0.42. The fitness value of the 
best composite operator in the final population is 0.93 and the population fitness 
value is 0.92. Figure 2.30(a) shows the output image of the best composite 
operator in the final population and Figure 2.30(b) shows the extracted ROI. The 

 

 

 

 

 

composite operator is applied to the testing SAR image.  Figure 2.30(c) and (d) 
show the output image of the composite operator and the extracted ROI with 
fitness value 0.92.  In Figure 2.30(a) and (c), pixels in the small dark regions have 
very low pixel values (negative values with very large absolute value), making 
most pixels of the images appear bright, although some of these pixels have 
negative pixel values. 

• River extraction:  Figure 2.11(a) shows the training image and Figure 2.14(a) 
shows the testing image.  The steady-state GP is used to generate the composite 
operator.  The fitness value of the best composite operator in the initial population 
is 0.43 and the population fitness value is 0.21.  The fitness value of the best 
composite operator in the final population is 0.74 and the population fitness value 
is 0.68.  Figure 2.31(a) shows the output image of the best composite operator in 
the final population and Figure 2.31(b) shows the extracted ROI.  The composite 
operator is applied to the testing image.  Figure 2.31(c) and (d) show the output 
image of the composite operator and the extracted ROI with fitness value 0.84.  
Like Figure 2.30(c), pixels in the small dark region have very low pixel values 
(negative values with very large absolute value), thus, making many pixels with 
negative pixel values appear bright. 

 

 

 

 

(d) ROI 
extracted from 
Figure 2.10(a) 

(c) composite 
feature image 

(b) ROI 
extracted from
Figure 2.9(a)

(a) composite 
feature image  

Figure 2.30. Results on SAR images containing lake. 

(b) ROI extracted 
from Figure 

2.11(a) 

(d) ROI extracted 
from Figure 

2.14(a) 

(c) composite  
feature image  

(a) composite 
feature image   

 
Figure 2.31. Results on SAR images containing river. 
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• Field extraction:  Figure 2.15(a) shows the training image and Figure 2.16(a) 
shows the testing image.  The generational GP was used to generate composite 
operators.  The fitness value of the best composite operator in the initial 
population is 0.62 and the population fitness value is 0.44.  The fitness value of 
the best composite operator in the final population is 0.87 and the population  

 

 

 

 
(d) ROI extracted 

from Figure 
2.16(a) 

(a) composite  
feature image  

(c) composite  
feature image  

(b) ROI extracted 
from Figure 

2.15(a)  

 Figure 2.32. Results on SAR images containing field. 
 

fitness value is 0.86.  Figure 2.32(a) shows the output image of the best composite 
operator in the final population and Figure 2.32(b) shows the extracted ROI.  The 
composite operator is applied to the testing image.  Figure 2.32(c) and (d) show 
the output image of the composite operator and the extracted ROI with fitness 
value 0.68.  

From Tables 2.3 and 2.5 and associated figures, it can be seen that if the training 
regions are carefully selected and represent the characteristics of training images, 
the composite operators learned by GP running on training regions are effective in 
extracting the ROIs containing objects and their performances are comparable to 
the performances of composite operators learned by GP running on the whole 
training images.  By running on the selected regions, the training time is greatly 
reduced.  Table 2.6 shows the average running time of GP running on selected 
regions (Region GP) and GP running on the whole training images (Image GP) 
over all ten runs and the time is measured in second.  Since the number of 
generation in [7] is 100 and the number of generation in this chapter is 70, the 
running time of “Image GP” in Table 2.6 is the actually running time of “Image 
GP” times 0.7.  It can be seen that the training time using selected training 
region(s) is much shorter than that using a whole image. 

 Table 2.6. Average running time of Region GP and Image GP. 

 

 

 

 Road  Lake  River Field 

Region GP 6915 2577 7951 3606 

Image GP 23608 9120 66476 21485 
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2.4.4 Comparison with a Simple ROI Extraction Algorithm 

To perform object detection, composite operators are used to extract ROIs that 
contain objects.  In order to show the effectiveness of composite operators in ROI 
extraction, they are compared with a simple ROI extraction algorithm.  The 
simple ROI extraction algorithm uses a threshold value to segment the image into 
foreground and background.  The region consisting of pixels with value greater 
than the threshold value is called bright region and its complement is called dark 
region.  If the bright region has a higher fitness than the dark region, the bright 
region is the foreground.  Otherwise, the dark region is the foreground.  The 
foreground is the ROI extracted by this simple algorithm.  It is obvious that the 
threshold value plays a vital role in the ROI extraction and selecting an 
appropriate threshold value is the key to the success of the simple ROI extraction 
algorithm. 

The performance of composite operators is compared with the simple ROI 
extraction algorithm when the best threshold value is used.  To find the best 
threshold value, every possible threshold value is tried by the algorithm and its 
performance is recorded. 

• The Simple ROI Extraction Algorithm 

1. find the maximum and minimum pixel values of the image. 
2. if the maximum pixel value is greater than 1000 
3. normalize the pixel values into the range of 0 to 1000. The pixel values 

are changed according to the following equation. 
   new_pixval = (org_pixval – min_pixval) / (max_pixval – min_pixval) * 
1000 
where new_pixval and org_pixval are the new and original pixel values, 
respectively and min_pixval and max_pixval are the minimum and maxi-
mum pixel values in the original image. After normalization, the minimum 
and maximum pixel values are 0 and 1000, respectively. 

else 
 do not normalize the image. 
 endif 
4. each pixel value between the minimum and maximum pixel values is used as 

the threshold value and its performance in ROI extraction is recorded. 
5. select the best threshold value and output its corresponding ROI. 
 

Figure 2.33 shows the ROIs extracted by the simple ROI extraction algorithm 
corresponding to the best threshold value.  The fitness values of the extracted 
ROIs and their corresponding threshold values are shown in Table 2.7.  
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Table 2.7.  Fitness values of the extracted ROIs and the corresponding threshold values. 

 

 

 

 

 

 

 

 

 

 Figure 2.33 (a) Figure 2.33 (b) Figure 2.33 (c) Figure 2.33 (d) 
Fitness 0.39 0.45 0.50 0.72 

Threshold 24 32 29 36 
 Figure 2.33 (e) Figure 2.33 (f) Figure 2.33 (g) Figure 2.33 (h) 

Fitness 0.81 0.31 0.55 0.63 
Threshold 24 34 38 112 

 Figure 2.33 (i) Figure 2.33 (j) Figure 2.33 (k) Figure 2.33 (l) 
Fitness 0.53 0.62 0.58 0.82 

Threshold 128 129 107 95 
 Figure 2.33 (m) Figure 2.33 (n) Figure 2.33 (o) Figure 2.33 (p) Figure 2.33 (q) 

Fitness 0.83 0.79 0.84 0.38 0.34 
Threshold 94 95 95 113 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(o) person (n) person (m) person(l) person 

(k) T72 
tank  

(j) T72 
tank  

(i) field 
vs. grass 

(h) field 
vs. grass 

(g) river 
vs. field 

(f) river vs.
field 

(e) lake vs. grass(d) lake vs. field(c) paved road vs. 
grass  

(b) unpaved road 
vs. field 

(a) paved road 
vs. field 

(q) car  (p) car  
Figure 2.33. ROI extracted by the simple ROI extraction algorithm. 
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To extract ROIs from SAR and IR images, the original SAR and IR images are 
used by the simple ROI extraction algorithm; to extract ROIs from RGB color 
images, the color images are first converted into gray intensity images and the 
simple ROI extraction algorithm operates on the converted gray images.  From 
Figure 2.33 and Table 2.7, it is obvious that the composite operators learned by  

 Table 2.8. Average running time of the composite operators and the simple ROI extraction
algorithm. 

 

 

 

 Road Lake River Field Tank Person Car 
Composite 
operator 5 15 33 8 3 1 2 

Simple ROI 
exaction algorithm 38 25.5 68.5 37.5 26 4.8 5.5 

GP are more effective in ROI extraction.  Actually, its performance is better than 
the best performance of the simple ROI extraction algorithm.  Table 2.8 shows the 
average running time of the composite operators and the simple ROI extraction 
algorithm in extracting ROIs from training and testing images.  The time is 
measured in seconds.  From Table 2.8, it is obvious that the composite operators 
are more efficient. 

2.5 Summary 
In this chapter, the efficacy of genetic programming in synthesizing composite 
operators and composite features for object detection is investigated.  The 
experimental results show that the primitive operators and primitive features 
defined are effective.  GP can synthesize effective composite operators for object 
detection by running on the carefully selected training regions of a training image 
and the synthesized composite operators can be applied to the whole training 
image and other similar testing images.  No significant difference is found 
between generational genetic programming and steady-state genetic 
programming.  GP has a well-known code bloat problem.  Controlling code bloat 
due to the limited computational resources inevitably restricts the search 
efficiency of GP.  How to reach the balance point between these two conflicting 
factors is critical in the implementation of GP.  In chapter 3, this problem will be 
addressed by designing a new fitness function based on minimum description 
length (MDL) principle to incorporate the size of a composite operator into the 
evaluation process.  Also, this work will be extended by discovering features 
within the regions of interest for automated object recognition in chapters 4 and 5.  
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Chapter 3 

Improving Efficiency of Genetic 
Programming for Object Detection 

In chapter 2, the efficacy of genetic programming in learning composite features 
for object detection is studied.  The motivation for using GP is to overcome the 
human experts’ limitation of considering only a very limited number of 
conventional combinations of primitive features.  Chapter 2 shows that GP is an 
effective way of synthesizing composite features from primitive ones for object 
detection.  However, genetic programming is very computationally expensive.  In 
the traditional GP (also called normal GP) used in chapter 2, crossover and 
mutation locations are randomly selected, leading to the disruption of the effective 
components (subtree in this report) of composite operators, especially at the later 
stage of the GP search.  This greatly reduces the efficiency of GP.  To improve 
the efficiency, it is very important for GP to identify and keep the effective 
components of composite operators.  In this chapter, smart crossover and smart 
mutation are proposed to smartly choose crossover and mutation points to prevent 
effective components of a composite operator from being disrupted.  Also, a 
public library is established to save the effective components of composite 
operators for later reuse.  Finally, a fitness function based on the minimum 
description length (MDL) principle is designed to incorporate the size of a 
composite operator into the fitness evaluation to address the well-known code 
bloat problem of GP without imposing severe restrictions on the GP search.  The 
GP with smart crossover, smart mutation and MDL-based fitness function is 
called smart GP. 

3.1 Motivation   

Crossover and mutation are two major mechanisms employed by GP to search the 
composite operator space.  As GP proceeds, effective components are generated.  
The power of crossover lies in the fact that by swapping sub-trees between two 
effective composite operators (parents), the effective components (sub-trees) in 
these two parents can be assembled together into child composite operators 
(offspring) and the new offspring may be better than both parents.  However, 
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although crossover can assemble good components to yield better offspring, it is 
also a destructive force in the sense that it can disrupt good components due to the 
random selection of crossover points.  When the search begins, since the initial 
population is randomly generated, it is unlikely that a composite operator contains 
good, especially large good, components and the probability of crossover 
breaking up a good component is small.  At this time, crossover is a constructive 
force and the fitness of a composite operator is increased.  As search proceeds, 
small good components are generated and assembled into larger and larger good 
components.  When more and more composite operators contain large good 
components to achieve high fitness, the good component accounts for a large 
portion of a composite operator and the composite operator becomes more and 
more fragile because the good components are more prone to being broken up by 
subsequent crossover due to the random selection of crossover point.  The 
crossover can damage the fitness of a composite operator in ways other than 
disrupting good components.  Sometimes, a good component is moved into an 
inhospitable context, that is, the crossover inserts a good component into a 
composite operator that does not use the good component in any useful way or 
other nodes of the composite operator cancel out the effect of the good 
component.  According to [2], crossover has an overwhelmingly negative effect 
on the fitness of the offspring from crossover, especially in the later stage of GP 
search.  Mutation is introduced to maintain the diversity of population; since a 
serious weakness of evolutionary algorithms is that the population recombined 
repeatedly will develop uniformity sooner or later [2].  However, in the later stage 
of GP search when more and more composite operators contain large good 
components, the random selection of mutation point leads to the high probability 
of disrupting good components and makes mutation a destructive force.  When 
both crossover and mutation become negative factors in the GP search, it is very 
unlikely that better composite operators will be generated.  To improve the 
efficiency and effectiveness of GP, it is highly desired that good components can 
be identified and kept from destructive crossover and mutation operations and 
stored in a public library for later reuse.  These components are treated as atomic 
terminals and are directly inserted into composite operators as a whole when the 
mutations are performed or during initialization. 

GP has a well-known code bloat problem in which the sizes of individuals 
become larger and larger.  In this report, the individuals are composite operators 
represented by binary trees.  In normal GP, crossover is performed by swapping 
the sub-trees rooted at the nodes randomly selected as crossover points.  It is easy 
to see that the size of one offspring (i.e., the number of nodes in the binary tree 
representing the offspring) may be greater than both parents if crossover is 
performed in this simple way.  If we do not control the sizes of composite 
operators, they will become larger and larger as GP proceeds.  This problem must 
be addressed, since when the size becomes too large, it takes a long time to 
execute a composite operator, greatly reducing the speed of GP.  Large-size 
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composite operators may overfit training data by approximating the noises in 
images.  Although the result on the training image is very good, the performance 
on unseen testing images may be bad.  Also, large composite operators take up a 
lot of computer memory.  Due to the limited computer resources and for the 
running speed of GP, usually in normal GP, a limit on the size of composite 
operators is established when performing crossover or mutation.  If the size of an 
offspring exceeds the maximum size allowed, the crossover operation is 
performed again until the sizes of both offspring are within the limit.  Although 
this simple method prevents the code bloat, the hard size limit may greatly restrict 
the search performed by GP, since after randomly selecting a crossover point in 
one composite operator, GP cannot select some nodes of the other composite 
operator as crossover point in order to guarantee that both offspring won’t exceed 
the size limit.  However, restricting the search greatly reduces the efficiency of 
GP, making it less likely to find good composite operators.  One may suggest that 
after two composite operators are selected, GP performs crossover twice and each 
time keeps the offspring of smaller size.  This method can enforce the size limit 
and prevent the size of offspring composite operators from growing large, but GP 
now only searches the space of these small composite operators.  With a small 
number of nodes, a composite operator may not capture the characteristics of the 
objects to be detected.  How to avoid restricting the GP search while at the same 
time preventing code bloat is crucial to the success of GP and is still a subject of 
research.  The key is to find a balance point between these two conflicting factors.  
In this chapter, a fitness function is designed based on minimum description 
length (MDL) principle [12] to take the size of a composite operator into the 
fitness evaluation process.  According to MDL principle, large composite 
operators effective on training regions may not have good fitness.  With the new 
MDL-based fitness function, we can take off the restriction on the selection of 
crossover points while preventing the composite operator from growing too large, 
since these large composite operators don’t have high fitness and will be culled 
out by selection.  

3.2 Related Research 
To improve the efficiency of GP, Tackett [13] devises a method called brood 
recombination to reduce the destructive effect of crossover.  In this method, when 
crossover is performed, many offspring are generated from two parents and only 
the best two offspring are kept.  D’haeseleer [14] devises strong context 
preserving crossover (SCPC) to preserve the context.  SCPC only permits 
crossover between nodes that occupied exactly the same position in the two 
parents.  He finds modest improvement in results by mixing regular crossover and 
SCPC.  Smith [15] proposes a conjugation operator for GP to transfer genetic 
information from one individual to another.  In his conjugation method, the parent 
with higher fitness becomes the donor and the other with lower fitness becomes 
the recipient.  The conjugation operator is different from crossover and it 
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simulates one of the ways in which individuals exchange genetic materials in 
nature.  Ito et al. [16] propose a depth-dependent crossover for GP in which the 
depth selection ratio is varied according to the depth of a node.  A node closer to 
the root node of the tree has a better chance of being selected as a crossover point 
to lower the chance of disrupting small good components near leaves.  Their 
experimental results show the superiority of the depth-dependent crossover to the 
random crossover in which crossover points are randomly selected.  Bhanu and 
Lin [17] propose smart crossover and mutation operators to identify and keep the 
good components of composite operators.  Their initial experiments show that 
with smart GP operators, GP can search the composite operator space more 
efficiently. 

Unlike the work of Ito [16] that used only the syntax of a tree (the depth of a 
node), the smart crossover and smart mutation proposed in this chapter evaluate 
the performance of each node to determine the interactions among them and use 
the fitness values of the nodes to determine crossover and mutation points.  Also, 
unlike my previous work [17], a public library is introduced to keep the good 
components for later reuse and more types of mutations are added to increase the 
population diversity.  Nine more primitive feature images are included to build 
composite operators.  To reduce the training time, the training in this chapter is 
performed on the selected regions of training images, not the whole images as in 
the previous work.  More importantly, a new MDL-based fitness function is 
designed to reach a balance point between conflicting factors of code bloat and 
less restriction on the GP search. 

3.3 MDL-based fitness function 
Fitness function plays an important role in the GP search.  It determines the 
direction and efficiency of GP search. Driven by a good fitness function, GP can 
generate effective composite operators more quickly.  One important question in 
the synthesis of composite operator is to determine the appropriate size of 
composite operators to prevent overfitting while at the same time capture the 
characteristics of objects.  With little knowledge on the composite operator space 
and the object characteristics, it is difficult to answer such questions and this is 
one of the reasons GP is applied to explore this vast space.  It is shown in chapter 
2 that the composite operator space is very large.  In order to find effective 
composite operators, GP must search actively.  To address the well-known code 
bloat problem and prevent severe restriction on the GP search, an MDL-based 
fitness function is designed to incorporate the composite operator size into the 
fitness evaluation process.  The fitness of a composite operator is defined as the 
sum of description length of the composite operator and the description of the 
segmented training regions with respect to this composite operator as a predictor 
for the label (object or background) of each pixel in the training regions.  Here, 
both lengths are measured in bits and the details of the coding techniques are 
relevant.  The trade-off between the simplicity and complexity of a composite 
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operator is that if the size of a composite operator is too small, it may not capture 
the characteristics of the objects to be detected, on the other hand, if the size is too 
large, the composite operator may overfit the training image, thus performing 
badly on unseen testing images.  With the MDL-based fitness function, the 
composite operator with the minimum combined description length of both the 
operator itself and image-to-operator error is the best composite operator and may 
perform best on unseen testing images. 

Based on the minimum description length principle, the following fitness function 
is proposed for GP to maximize: 

F(COi) = - (r×log (Npo) ×Size(COi) + (1 – r) × (no + nb) ×(log(Wim)+log(Him)) 

 (3.1) 

where COi is the ith composite operator in the population, Npo is the number of 
primitive operators available for GP to synthesize composite operators, Size(COi) 
is the size of the composite operator which is the number of nodes in the binary 
tree representing it, no and nb are the number of object and background pixels 
misclassified and Wim and Him are the width and height of the training image and r 
is a parameter determining the relative importance of the composite operator size 
and the detection rate, which is 0.7 in this chapter. 

We now give a brief explanation of this fitness function.  Suppose a sender 
and a receiver both have the training image and the training regions and they agree 
in advance that composite operators can be use to locate the object in an image, 
that is, to determine the label (object or background) of each pixel in training 
regions.  But only the sender knows the ground truth (the label of each pixel).  
Now, the sender wants to tell the receiver which pixels belong to the object and 
which pixels belong to the background.  One simple approach to do this is to send 
a bit sequence of n (n is the number of pixels in the training regions) bits where 1 
represents an object pixel and 0 represents a background pixel, provided that both 
the sender and receiver know the order of the training regions and they agree that 
the pixels are scanned in the top-to-bottom and left-to-right fashion.  However, n 
is usually very large, thus the communication burden is heavy.  To reduce the 
number of bits to be transmitted, the sender can send the composite operator to the 
receiver.  Then the receiver applies the composite operator on the training regions 
to get segmented training regions.  When sending the composite operator, the 
sender can send its nodes in a pre-traversal order.  Given Npo primitive operators 
(include primitive feature images), log(Npo) is needed to encode each node.  Thus 
the cost of sending a composite operator is log (Npo) ×Size(COi).  However, some 
pixels may be misclassified by the composite operator.  In order for the receiver to 
get the truth, the sender needs to tell the receiver which pixels are misclassified.  
Each pixel is represented by its coordinate in the image.  If the width and height of 
an image are Wim and  Him respectively, then log(Wim)+log(Him) bits are needed to 
encode each pixel.  Thus the cost of sending the misclassified pixels is (no + nb) 
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×(log(Wim)+log(Him)).  If the composite operators are very effective and its size is 
not too large, then only few pixels are misclassified and the number of bits to send 
is much smaller than n. 

In chapter 2, the fitness function is defined as n(G∩G′) / n(G ∪ G′), where G and 
G′ are foregrounds in the ground truth image and the resultant image of a 
composite operator respectively and n(X) denotes the number of pixels in the 
intersection of region X and the training regions.  It measures how the ground truth 
and the detection results are overlapped.  In this chapter, this measure is called the 
goodness of a composite operator.  It is not used to drive GP, but only used to 
measure the effectiveness of a composite operator.  

3.4 Technical Approach 

• Primitive feature images and operators:  The primitive feature images and 
primitive operators are the same as those used in chapter 2.  There are 16 
primitive feature images: the original image (0), mean (1–3), deviation (4–6), 
maximum (7–9), minimum (10–12) and median (13–15) images obtained by 
applying templates of sizes 3×3, 5×5 and 7×7. 17 primitive operators are ADD, 
SUB, MUL, DIV, MAX2, MIN2, ADDC, SUBC, MULC, DIVC, SQRT, LOG, 
MAX, MIN, MED, MEAN and STDV. 

• Parameters and termination:  The key parameters are the population size M, 
the number of generation N, the crossover rate, the mutation rate and the 
goodness threshold.  The GP stops whenever it finishes the pre-specified number 
of generations or whenever the best composite operator in the population has 
goodness value greater than the goodness threshold. 

• Selection, crossover and mutation:  The selection operation selects 
composite operators from the current population to let them survive into next 
generation.  As in chapter 2, tournament selection is used.  

In normal GP, crossover and mutation points are selected at random.  Due to 
the random selection, crossover and mutation become destructive at the later stage 
of GP search when composite operators contain large effective components.  To 
avoid the above problem, smart crossover and smart mutation are proposed to 
identify and keep the effective components.  In smart GP, the output image of 
each node is evaluated and its fitness value is recorded.  The fitness of an edge is 
defined as the fitness difference between the parent node and the child node 
linked by the edge.  An Edge is classified as good edge if its fitness is positive. 
Otherwise, it is a bad edge.  

In the smart crossover, all the bad edges are identified and one of them is selected 
by random selection or roulette selection (based on the fitness of the bad edges) 
invoked with equal probability.  The child node of the selected bad edge is the 
crossover point and the subtree rooted at the crossover points are swapped 
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between parents.  If a composite operator has no bad edge, the crossover point is 
randomly selected. 

A public library is established to store good components for later reuse by smart 
mutation.  The larger the library, the more effective components can be kept for 
later reuse, but the likelihood of each effective component being reused is 
reduced.  In this chapter, the public library stores 100 good components. 

In the smart mutation, mutation point is the parent or child node of a bad edge or a 
bad node whose goodness value is below the average goodness value of all the 
nodes.  The mutation point is selected among those qualified nodes at random.  
There are four smart mutations invoked with equal probability:  

(a) select the parent node of a bad edge as mutation point.  If the parent node 
has only one child, the parent is deleted and the child node is linked to the 
grand parent node (parent node of the parent node), if no grand parent 
node exists, the child becomes the root node; if the parent node has two 
children, the parent node and the sub-tree rooted at the child with smaller 
fitness value are deleted and the other child is linked directly to the grand 
parent node, if no grand parent node exists, the child becomes the root 
node;  

(b) select the parent a node of a bad edge as mutation point and replace the 
primitive operator stored in the node with another primitive operator with 
the same number of input as the replaced one;  

(c) select two subtrees whose roots are the child nodes of two bad edges 
within the composite operator and swap them.  Of course, neither of the 
two sub trees can be a sub-tree of the other; 

(d) select a bad node as mutation point.  Replace the subtree rooted at the 
node with another randomly generated tree or with an effective component 
randomly selected from the public library.  

The first two mutations delete a node that cancel the effect of its child or children; 
the third mutation moves two components away from unfriendly contexts that 
cancel their effects and inserts them into new contexts; the fourth mutation deletes 
a bad component and replace it with a new component or a good one stored in the 
public library.  

ε-greedy policy is used to determine whether a smart operator (smart crossover or 
mutation) or a random operator (random crossover or mutation) is used.  The 
smart operator and random operator are invoked with probability ε and 1 - ε, 
respectively.  In this chapter, ε is a variable and can be adjusted by the following 
formula: 

ε = εmin + (εmax - εmin) ×Goodpopu                                  (3.2) 
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where εmin is 0.5 and εmax  is 0.9, Goodpopu is population goodness (the average 
goodness of the composite operators in the population).  The reason for the using 
of random operators is that smart operators bias the selection of crossover and 
mutation points.  They avoid disrupting effective components, but at the same 
time they restrict the GP search.  According to our experiments, restricting the 
search reduces the efficiency of GP.  At the beginning when the population is 
initialized, few composite operators contain effective components.  At this time, 
GP should search actively to generate effective components and assemble them 
together.  It is harmful to apply smart operators at the early stage of GP search 
since they restrict the search.  Only after some time when the effective 
components are gathered in composite operators, smart operators should be 
applied to identify the effective components to avoid disrupting them and keep 
them in a public library for later reuse.  So, in this report, smart operators are not 
used in the first 20 generations.  In the last 50 generations, smart operators are 
applied with higher and higher probability as the population goodness becomes 
larger and larger.  

• Generational GP and smart GP:  As in chapter 2, generational genetic 
programming and steady-state genetic programming are used to synthesize 
composite operators.  The difference is that in smart GP, MDL-based fitness 
function is used, smart GP crossover and smart mutation are invoked with 
probability determined by ε-greedy policy and a public library is set up to store 
the effective components of composite operators. 

Generational Genetic Programming: 

0. randomly generate populations of size M and evaluate each composite opera-
tor in P. 

1. for gen = 1 to N do   // N is the number of generation 
2. keep the best composite operator in P. 
3. perform crossover on the composite operators in P until crossover rate is 

satisfied and keep all the offspring  from crossover. if gen < 20 use random 
crossover only; otherwise smart crossover and random crossover are in-
voked according to ε-greedy policy. 

4. perform mutation on the composite operators in P and the offspring  from 
crossover with the probability of  mutation rate. if gen < 20 use random 
mutation only; otherwise smart mutation and random mutation are invoked 
according to ε-greedy policy. 

5. perform selection on P to select some composite operators. The number of 
selected composite operators must be M minus the number of composite 
operators from crossover. 

6. combine the composite operators from crossover with those from P to get a 
new population P’. 

7. evaluate offspring from crossover and the mutated composite operators.  
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8. let the best composite operator from P replace the worst composite opera-
tor in P’ and  let P = P’. 

9. update the value of ε according to equation (3.2) and store good compo-
nents of composite operators in the public library. 

10. if  the goodness of the best composite operator in P is above the goodness 
threshold then 

11.      stop. 
 endif 
12. check each composite operator in P and use its best component to replace 

it. 
endfor  // loop 1 

 

Steady-state Genetic Programming: 

0.    randomly generate population P of size M and evaluate composite operators 
in P. 
1. for gen = 1 to N do   // N is the number of generation 
2. keep the best composite operator in P. 
3. repeat 
4.   select 2 composite operators from P based on  their fitness values for 

crossover. 
5.    select 2 composite operators with the lowest fitness values in P for re-

placement. 
6. perform crossover operation and let the 2 offspring replace the 2 com-

posite operators selected for replacement. if gen < 20 use random cross-
over only; otherwise smart crossover and random crossover are invoked 
according to ε-greedy policy.  

7. execute the 2 offspring and evaluate their fitness values. 
8. until crossover rate is met. 
9. perform mutation on each composite operator with probability of mutation 

rate. if gen < 20 use random mutation only; otherwise smart mutation and 
random mutation are invoked according to ε-greedy policy. 

10. execute and evaluate mutated composite operators. 
11. after crossover and mutation, a new population P′ is generated. 
12. let the best composite operator of population P replace the worst composite 

operator in P’ and let P = P’. 
13. update the value of ε according to equation (3.2) and store good compo-

nents of composite operators in the public library. 
14. if  the goodness of the best composite operator in P is above goodness 

threshold value then 
15.       stop. 
 endif 
16. check each composite operator in P and use its best component to replace 
it. 
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 endfor  // loop 1 

3.5 Experiments 

Experiments are performed with real SAR images of sizes 128×128 and 80×80 
(tank images).  To synthesize composite operators, GP is applied to a region (or 
regions) carefully selected from the training image to reduce the training time.  
The generated composite operator is then applied to the whole training image and 
other testing images.  For the purpose of objective comparison, normal GP (GP 
with random crossover and random mutation) and smart GP (GP with smart 
crossover and smart mutation) are invoked ten times with the same parameters 
and training regions in each experiment and only the average performances are 
used in comparison.  The results from the run in which GP finds the best 
composite operator among the best composite operators found in all ten runs are 
reported.  The parameters are: population size (100), the number of generation 
(70), the goodness threshold value (1.0), the crossover rate (0.6), the mutation rate 
(0.05), and the segmentation threshold (0).  The GP program ran on a Sun Ultra 2 
workstation. 

3.5.1 Road Extraction 
The training image contains horizontal paved road and field, as shown in Figure 
3.1(a); two testing images contain unpaved road vs. field and vertical paved road 
vs. grass, as shown in Figure 3.7(a) and 3.7(f), respectively.  Two training regions 
locate from (5, 19) to (50, 119) and from (82, 48) to (126, 124).  Figure 3.1(b) 
shows the ground truth.  The white region corresponds to the road and only the 
portion of ground truth in the training regions is used in the fitness evaluation. 

 

 

 

 

 

The generational GP is used to synthesize a composite operator to detect the road.  
For normal GP, the goodness value of the best composite operator in the initial 
population is 0.60 and the goodness value of the best composite operator in the 
final population is 0.94.  Figure 3.1(c) shows the output image of the best 
composite operator on the whole training image and Figure 3.1(d) shows the 
binary image after segmentation.  The goodness value of the extracted ROI is 
0.90. For smart GP, the fitness and goodness of the best composite operator in the 
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Figure 3.1. Training SAR image containing road. 
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initial population are −2303.6 and 0.45.  The corresponding values in the finial 
population are –325.4 and 0.94.  Figure 3.1(e) shows the output image of the best 
composite operator on the whole training image and Figure 3.1(f) shows the 
binary image after segmentation.  The goodness value of the extracted ROI is 
0.91.  

The best composite operator has 18 nodes and its depth is 13.  It has three leaf 
nodes all containing 7×7 median image, which contains less speckle noises due to 
the median filter’s effectiveness in eliminating speckle noises.  It is shown in 
Figure 3.2, where PFIM15 represents 7×7 median image.  Compared to smart GP, 
the best composite operator from normal GP has 27 nodes and its depth is 16.  

Figure 3.3 shows how the average fitness of the best composite operators and the 
average fitness of the populations over all 10 runs change as GP proceeds.  Unlike 
in chapter 2 where the population fitness approaches the fitness of the best 
composite operator as GP proceeds, in Figure 3.3, population fitness is much 
lower than that of the best composite operator even at the end of GP search.  It is 
reasonable, since the selection of crossover points is not restricted by a hard size 
limit on composite operators.  The difference between the sizes of the composite 
operators in the population is large and so are their fitness values.  The population 
fitness is not important since only the best composite operator is used in testing.   

 

 

 

 

 

If GP finds one effective composite operator, the GP learning is successful.  
That’s why we don’t compare the population fitness between normal GP and 
smart GP.  The large difference between the fitness of the best composite operator 
and that of the population indicates that the diversity of the population is 
maintained during GP search, which is very helpful in preventing premature 
convergence. 

Ten best composite operators are obtained in the initial and final generations of 
ten runs, respectively.  Figure 3.4 shows the utility of primitive operators and 
primitive feature images in the best composite operators of initial and final 
generations.  To compute utility, we first compute the total number of each 
primitive operator and the total number of each primitive feature image in the 10 
best composite operators, then divide them by the total number of internal nodes 
and the total number of leaf nodes of these 10 best composite operators, 

Figure 3.2. Learned composite operator 
tree in LISP notation. 
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respectively.  From Figure 3.4(b), it can be seen that MED operator has the most 
frequent occurrence in the best composite operators learned by GP. 

Figure 3.5 shows the output image of each node of the best composite operator 
shown in Figure 3.2.  The primitive operators in Figure 3.5 are connected by 
arrow.  The operator at the tail of an arrow provides input to the operator at the 
head of the arrow.  After segmenting the output image of a node, we get the ROI 

 

 

 

 

 

 

 

 

 

(shown as the white region) extracted by the corresponding subtree rooted at the 
node.  The extracted ROIs and their fitness values are shown in Figure 3.6.  If an 
output image has positive pixels only (for example, PFIM15 has positive pixels 
only), everything is extracted and the goodness is 0.25.  From Figure 3.6, it can be 
seen that since the feature image from subtree (DIV PFIM15 (STDV PFIM15)) 
has no pixel with negative value, it does not affect the ROI extracted from the 
feature image output by its parent node MUL.  This branch is a redundant code of 
the composite operator. 

The composite operator obtained in the above training is applied to the other two 
real SAR images shown in Figure 3.7(a) and 3.7(f).  Figure 3.7(b) and 3.7(g) 
show the output of the composite operator from normal GP and Figure 3.7(c) and 
Figure 3.7(h) show the regions extracted from Figure 3.7(a) and Figure 3.7(f), 
respectively.  The goodness values of the extracted regions are 0.90 and 0.93.  
Figure 3.7(d) and 3.7(j) show the output of the composite operator from smart GP 
and Figure 3.7(e) and Figure 3.7(k) show the regions extracted from Figure 3.7(a) 
and Figure 3.7(f), respectively.  The goodness values of the extracted regions are 
0.91 and 0.93.  The average running time of the best composite operators from 
normal GP on training and testing images is 5 seconds; the corresponding time of 
that from smart GP is 2.6 seconds. 
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Figure 3.4. Utility of primitive operators and primitive feature images. 
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Figure 3.5. Feature images output by the nodes of the best composite operator from smart GP. 
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Figure 3.6. ROIs extracted from the output images of the nodes of the best composite 
operator from smart GP. (The fitness value is shown for the entire image) 
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3.5.2 Lake Extraction 
Two SAR images contain lake.  The training image, shown in Figure 3.8(a), 
contains a lake and field, and the testing image, shown in Figure 3.9(a) contains a 
lake and grass.  The training region is from (85, 85) to (127, 127).  Figure 3.8(b) 
shows the ground truth.  

 

 

 

 

 

 

 

The steady-state GP is used to generate composite operators.  For normal GP, the 
goodness value of the best composite operator in the initial population is 0.62 and 
the goodness value of the best composite operator in the final population is 0.99.  
Figure 3.8(c) shows the output image of the best composite operator on the whole 
training image and Figure 3.8(d) shows the binary image after segmentation.  The 
goodness value of the extracted ROI is 0.95.  For smart GP, the fitness and 
goodness of the best composite operator in the initial population are −1585.5 and 
0.55.  The corresponding values in the finial population are –158.9 and 0.97.  
Figure 3.8(e) shows the output image of the best composite operator on the whole 
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Figure 3.8. Training SAR image containing lake. 
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training image and Figure 3.8(f) shows the binary image after segmentation.  The 
goodness value of the extracted ROI is 0.94.  The composite operator is applied to 
the testing image containing a lake and grass.  Figure 3.9(b) shows the output of 
the composite operator from normal GP and Figure 3.9(c) shows the region 
extracted.  The goodness value of the region is 0.97.  Figure 3.9(d) shows the 
output of the composite operator from smart GP and Figure 3.9(e) shows the 
region extracted.  The goodness value of the region is 0.98.  The average running 
time of the best composite operators from normal GP on training and testing 
images is 15 seconds; the corresponding time of that from smart GP is 1 second.  
The sizes of the best composite operators from normal GP and smart GP are 28 
and 13, respectively. 

 

 

 

 

 

 

 

 

3.5.3 River Extraction 

Two SAR images contain river and field.  Figure 3.10(a) and 3.10(b) show the 
original training image and the ground truth provided by the user.  The white 
region in Figure 3.10(b) corresponds to the river to be extracted.  The training 
regions are from (68, 31) to (126, 103) and from (2, 8) to (28, 74).  The testing 
SAR image is shown in Figure 3.13(a). 

 

 

 

 

 

 

 

The steady-state GP is used to generate a composite operator.  For normal GP, the 
goodness values of the best composite operator in the initial and final populations 
are 0.59 and 0.89, respectively.  Figure 3.10(c) shows the output image of the best 
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Figure 3.9. Testing SAR image containing lake. 
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composite operator on the whole training image and Figure 3.10(d) shows the 
binary image after segmentation.  The goodness of the extracted ROI is 0.72.  For 
smart GP, the fitness and goodness of the best composite operator in the initial 
population are −2480.8 and 0.23.  The corresponding values in the finial 
population are –404.6 and 0.90.  Figure 3.10(e) shows the output image of the 
best composite operator on the whole training image and Figure 3.10(f) shows the 
binary image after segmentation.  The goodness of the extracted ROI is 0.71.  The 
best composite operator has 13 nodes and its depth is 12.  It has one leaf node 
containing 3×3 mean image.  Among 13 nodes, seven of them are MED operators 
effective in eliminating speckle noises.  It is shown in Figure 3.11.  Compared to 
smart GP, the best composite operator from normal GP has 30 nodes with depth 
23.  Figure 3.12 shows how the average fitness of the best composite operators 
and the average fitness of the populations over all 10 runs change as GP searches 
the composite operator space. 
 

 

 

 

 

 

 

 

 

 

 

 

The composite operator is applied to the testing image containing a river and 
field.  Figure 3.13(b) shows the output of the composite operator from normal GP 
and Figure 3.13(c) shows the region extracted from Figure 3.13(a).  The goodness 
of the region is 0.83.  Figure 3.13(d) shows the output of the composite operator 
from smart GP and Figure 3.13(e) shows the region extracted.  The goodness of 
the region is 0.86.  There are some islands along with the river around them that 
are not extracted.  The average running time of the best composite operators from 

Figure 3.11. Learned composite operator 
tree in LISP notation. 
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Figure 3.13. Testing SAR image containing river. 
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normal GP on training and testing images is 33 seconds; the corresponding time 
of that from smart GP is 19 seconds. 

3.5.4 Field Extraction 

Two SAR images contain field and grass.  Figure 3.14(a) and 3.14(b) show the 
original training image and the ground-truth.  The training regions are from (17, 
3) to (75, 61) and from (79, 62) to (124, 122).  Extracting field from a SAR image 
containing field and grass is considered as the most difficult task among the five 
experiments, since the grass and field are similar to each other and some small 
regions between grasses are actually fields. 

The generational GP was used to generate composite operators.  For normal GP, 
the goodness value of the best composite operator in the initial population is 0.52 
and the goodness value of the best composite operator in the final population is 
0.78.  Figure 3.14(c) shows the output image of the best composite operator on 
the whole training image and Figure 3.14(d) shows the binary image after 
segmentation.  The goodness value of the extracted ROI is 0.88. For smart GP, the 
fitness and goodness of the best composite operator in the initial population are 
−7936.2 and 0.39.  The corresponding values in the finial population are –1999.4 
and 0.79.  Figure 3.14(e) shows the output image of the best composite operator 
on the whole training image and Figure 3.14(f) shows the binary image after 
segmentation.  The goodness value of the extracted ROI is 0.90. 
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Figure 3.15. Testing SAR image containing field. 
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The composite operator is applied to the testing image containing field and grass 
shown in Figure 3.15(a).  Figure 3.15(b) shows the output of the composite 
operator from normal GP and Figure 3.15(c) shows the extracted region with 
goodness value 0.81.  Figure 3.15(d) shows the output of the composite operator 
from smart GP and Figure 3.15(e) shows the extracted region with goodness value 
0.84.  The average running time of the best composite operators from normal GP 
on training and testing images is 8 seconds; the corresponding time of that from 
smart GP is 12 seconds.  The sizes of the best composite operators from normal 
GP and smart GP are 9 and 15, respectively. 

3.5.5 Tank Extraction 

In this subsection, GP is applied to synthesize features for the detection of 
military targets T72 tanks.  Their SAR images are taken under different 
depression and azimuth angles and the size of the images is 80×80.  The training 
image contains T72 tank under depression angle 17° and azimuth angle 135°, 
which is shown in Figure 3.16(a).  The training region is from (19, 17) to (68, 66).  
The testing SAR image contains a T72 tank under depression angle 20° and 
azimuth angle 225°, which is shown in Figure 3.19(a).  The ground-truth is shown 
in Figure 3.16(b). 

 

 

 

 

 

The generational GP is applied to synthesize composite operators for tank 
detection.  For normal GP, the goodness value of the best composite operator in 
the initial population is 0.65 and the goodness value of the best composite 
operator in the final population is 0.88.  Figure 3.16(c) shows the output image of 
the best composite operator on the whole training image and Figure 3.16(d) shows 
the binary image after segmentation.  The goodness value of the extracted ROI is 
0.88.  For smart GP, the fitness and goodness of the best composite operator in the 
initial population are −807.2 and 0.54.  The corresponding values in the finial 
population are –190.8 and 0.89.  Figure 3.16(e) shows the output image of the 
best composite operator on the whole training image and Figure 3.16(f) shows the 
binary image after segmentation.  The goodness value of the extracted ROI is 
0.89.  The best composite operator has 5 nodes and its depth is 4. It has one leaf 
node containing 3×3 maximum image.  Two internal nodes are MED operator, 
which is useful in eliminating speckle noises in SAR images.  It is shown in 
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Figure 3.17.  Compared to smart GP, the best composite operator from normal GP 
has 28 nodes and its depth is 17.  Figure 3.18 shows how the average fitness of 
the best composite operators and the average fitness of the populations over all 10 
runs change as GP proceeds. 

 

 

 

 

 

 

 

 

The composite operator is applied to the testing image containing T72 tank under 
depression angle 20° and azimuth angle 225°.  Figure 3.19(b) shows the output of 
the composite operator from normal GP and Figure 3.19(c) shows the region 
corresponding to the tank.  The goodness of the extracted ROI is 0.84.  Figure 
3.19(d) shows the output of the composite operator from smart GP and Figure 
3.19(e) shows the region corresponding to the tank.  The goodness of the 
extracted ROI is 0.84.  The average running time of the best composite operators 
from normal GP on training and testing images is 3 seconds; the corresponding 
time of that from smart GP is 2 seconds.  The results show that GP is very much 
capable of synthesizing composite operators for military target detection.  

 

 

 

 
 

 

3.5.6 Comparison between Normal GP and Smart GP 

This subsection compares the performance of smart GP with that of normal GP.  
For objective comparison, only the average performance over all ten runs is used 
in comparison.  Figure 3.20 shows how the average goodness of the best 
composites operators improves as normal GP and smart GP proceed.  The thick 
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Figure 3.19. Testing SAR image containing tank.  

Figure 3.17. Learned composite  
operator tree in LISP notation. 

(MED (MED (SUBC (DIVC PFIM7)))) 

Figure 3.18. Fitness versus  
generation (T72 tank).  

-5000
-4000
-3000
-2000
-1000

0
1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fi
tn

es
s

best

population



Chapter 3:  Improving Efficiency of Genetic Programming for Object Detection 

 55

line stands for the goodness of smart GP and the thin line stands for the goodness 
of normal GP.  It shows that smart GP finds good composite operators more 
quickly.  Table 3.1 shows the average goodness of the best composite operator in 
the initial and final populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. The average goodness of the best composite operators from normal and smart 
GPs. 

Normal GP Smart GP  
Road Lake River Field Tank Road Lake River Field Tank 

Initial 0.47 0.64 0.49 0.54 0.49 0.46 0.54 0.34 0.46 0.41 
Final 0.82 0.93 0.82 0.73 0.85 0.88 0.95 0.86 0.75 0.86 

 

Normal GP Smart GP  
Road Lake River Field Tank Road Lake River Field Tank 

Size 29.4 28.4 27.6 20.2 24.6 24.6 11.8 16.8 14.9 5.7 
Training 0.789 0.89 0.583 0.794 0.829 0.858 0.916 0.650 0.839 0.849 
Testing 0.620 

0.797 
0.913 0.754 0.675 0.766 0.831 

0.914 
0.972 0.836 0.784 0.821 

 

Table 3.2. The average size and performance of the best composite operators from 
normal and smart GPs. 
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Figure 3.20. The average goodness of the best composite operators versus generation. 
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Table 3.2 shows the average size of the best composite operators from normal GP 
and smart GP.  It also shows the average performances of the best composite op-
erators on the whole training image and other testing image(s).  It is obvious that 
the best composite operators learned by smart GP have better performance and 
smaller size.  With smaller composite operators, the computational expense dur-
ing testing is greatly reduced. 

 

 

 

 

Table 3.3 shows the average running time of normal GP and smart GP.  By 
intuition, the running time of smart GP should be much longer than that of normal 
GP, since in normal GP, only the output image of the root node is evaluated and 
smart GP evaluates the output image of each node of a composite operator.  
However, from Table 3.3, it can be seen that the difference between the running 
times is not as much as expected.  In the experiments with lake and tank images, 
the running time of smart GP is much shorter.  The reason lies in the code bloat 
problem of GP.  In normal GP, a maximum size of composite operators (in this 
chapter, it is 30) is specified.  At the later stage of the GP search, most of the 
composite operators have size equal or close to the maximum size allowed.  In 
smart GP, the MDL-based fitness function takes the size of composite operators 
into the fitness evaluation process to avoid specifying a hard size limit.  The 
difference between the sizes of composite operators is large, even at the later 
stage of the GP search.  Although a few composite operators have size larger than 
the maximum size allowed in normal GP, many of them have size smaller than 
the specified size limit.  If the maximum size allowed in normal GP is large, it can 
be expected that the running time of the normal GP will be longer than that of 
smart GP.  Also, in the above experiments, the goodness threshold value is set 1.0 
to force GP to finish the pre-specified number of generations.  If goodness 
threshold value is smaller than 1.0, smart GP may run fewer generations, since it 
finds effective composite operators more quickly, thus reducing its running time. 

3.6 Summary 
In this chapter, smart crossover and smart mutation are proposed to improve the 
efficiency of genetic programming by identifying the effective components of 
composite operators and preventing them from being disrupted.  The effective 
components are stored in a public library for later reuse.  To address the well-
known code bloat problem of GP, a new fitness function based on the minimum 
description length is designed to take the size of a composite operator into the 

Table 3.3. Average running time of Normal GP and Smart GP. 

 Road  Lake  River Field Tank 

Normal GP 6915 2577 7951 3606 2686 

Smart GP 10249 770 11035 5251 649 
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fitness evaluation process.  The new fitness function prevents composite operators 
from growing too large while at the same time imposing relatively less severe 
restrictions on the GP search.  With MDL-based fitness function and the smart 
operators, GP can learn good composite operators more quickly, improving the 
efficiency of GP.  Compared to normal GP, the composite operators learned by 
smart GP have better performance on the training and testing images and have 
smaller size, reducing the computational expenses during testing. 
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Chapter 4 

GA-based Feature Selection for 
Object Detection 

Automatic detection of potential objects in images is an important problem [3, 
19].  A CFAR (constant false alarm rate) detector is commonly used to 
“prescreen” a synthetic aperture radar (SAR) image to localize possible object 
pixels [19].  Generally, object pixels correspond to bright spots caused by strong 
radar return from natural or man-made objects in SAR images.  Parts of an image 
that are not selected are rejected from further computation.  In the next stage of 
processing, regions of interest are further examined to distinguish man-made 
objects from natural clutter.  Finally, a classifier such as a Bayesian classifier, a 
template matcher or a model-based recognizer is used to reject man-made clutter.  

In chapters 2 and 3, genetic programming is applied to synthesize composite 
features from primitive features for object detection.  The primitive features used 
there are domain-independent and not specific to a kind of imagery.  The focus of 
this chapter is to select a minimal set of features from 20 available features to 
distinguish objects from natural clutter.  10 of these 20 features are simple and 
domain-independent features and the other 10 are specifically designed to process 
SAR images.  The approach is based on a closed loop system involving GA based 
feature selection and a Bayesian classifier.  GA uses a MDL-based fitness 
function that combines the number of features to be used and the error rate of the 
classifier.  The results are presented using real SAR images.  The experimental 
results show that the MDL-based fitness function is the most effective in selecting 
a minimal set of features to describe the data accurately compared to other three 
fitness functions, and the subset of features selected can greatly reduce the 
computational cost while at the same time maintaining the desired detection 
accuracy. 

4.1 Motivation 
In general, the goal of feature selection is to find the subset of features that 
produces the best object detection and recognition performance and requires the 
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least computational effort.  Feature selection is important to object detection and 
recognition systems mainly for three reasons:   

First, using more features can increase system complexity, yet it may not always 
lead to higher detection/recognition accuracy.  Sometimes, many features are 
available to a detection/recognition system.  However, these features are not 
independent and may be correlated.  A bad feature may greatly degrade the 
performance of a system.  Thus, selecting a subset of good features is important.  

Second, features are selected by a learning algorithm during the training phase.  
The selected features are used as a model to describe the training data.  Selecting 
many features means a complicated model being used to approximate the training 
data.  According to minimum description length (MDL) principle, a simple model 
is better than a complex model [12].  Since the training data may be corrupted 
with a variety of noises, a complex model may overfit the training data and may 
be sensitive to noises, leading to bad performance on unseen test data.  In this 
chapter, GA is used to select as few features as possible to describe the training 
data effectively.  

Third, using fewer features can reduce the computational cost, which is important 
for real-time applications.  Also it may lead to better classification accuracy due 
to the finite sample size effect.     

4.2 Related Research 
Genetic algorithms (GAs) are widely used in image processing, pattern 
recognition and computer vision [3, 20, 21].  They are used to evolve 
morphological probes that sample the multi-resolution images [22], to generate 
image filters for target detection [23], to select good parameters of partial shape 
matching for occluded object recognition [24], to perform pattern clustering and 
classification [25], etc.  GAs are also used to automatically determine the relative 
importance of many different features and to select a good subset of features 
available to the system [26]. 

Bhanu and Lee [27] present a closed loop image segmentation system, which 
incorporates a genetic algorithm to adapt the segmentation process to changes in 
image characteristics caused by variable environmental conditions such as time of 
day, time of year, clouds, etc.  The segmentation problem is formulated as an 
optimization problem and the genetic algorithm efficiently searches the 
hyperspace of segmentation parameter combinations to determine the parameter 
set which maximizes the segmentation quality criteria in terms of edge-border 
coincidence, boundary consistency, pixel classification, object overlap and object 
contrast.  Their experimental results demonstrate that genetic algorithm can 
continuously adapt the segmentation process to normal environmental variations 
to provide robust performance when interacting with a dynamic environment.  
Emmanouilidis et al. [28] discuss the use of multi-criteria genetic algorithms for 
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feature selection.  With multi-criteria fitness functions, genetic algorithm tries to 
minimize the number of features selected while maintaining the high 
classification accuracy.  The algorithm is shown to yield a diverse population of 
alternative feature subsets with various accuracy and complexity trade-off.  It is 
applied to select features for performing classification with fuzzy models and is 
evaluated on real-world data sets such as cancer data set in which each data point 
has 9 input features and one output label (malignant or benign).  Estevez et al. 
[29] propose a genetic algorithm for selecting features for neural network 
classifiers.  Their algorithm is based on a niching method to find and maintain 
multiple optima.  They also introduce a new mutation operator to speed up the 
convergence of the genetic algorithm.  Rhee and Lee [30] present an unsupervised 
feature selection method using a fuzzy-genetic approach.  The method minimizes 
a feature evaluation index, which incorporates a weighted distance between a pair 
of patterns used to rank the importance of the individual features.  A pattern is 
represented by a set of features and the task of genetic algorithm is to determine 
the weighting coefficients of features in the calculation of weighted distance.  
Matsui et al. [31] use genetic algorithm to select the optimal combination of 
features to improve the performance of tissue classification neural networks and 
apply their method to problems of brain MRI segmentation to classify gray 
matter/white matter regions.  

Quilan and Rivest [32] explore the use of minimum description length principle 
for the construction of decision trees.  The MDL defines the best decision tree to 
be the one that yields the minimum combined length of the decision tree itself 
plus the description of the misclassified data items.  Their experimental results 
show that the MDL provides a unified framework for both growing and pruning 
the decision tree, and these trees seem to compare favorably with those created by 
other techniques such as C4 algorithm.  Gao et al. [33] use MDL to determine the 
best model granularity such as the sampling interval between the adjacent 
sampled points along the curve of Chinese characters or the number of nodes in 
the hidden layer of a three layer feed-forward neural network.  Their experiments 
show that in these two quite different settings the theoretical value determined 
using MDL coincides with the best value found experimentally.  The key point of 
their work is that using MDL the optimal granularity of the model parameters can 
be computed automatically rather than being tuned manually. 

In this chapter, genetic algorithm is used to select a good subset of features used 
for object detection in SAR images.  The object detection task involves the 
selection of a subset of features to discriminate SAR images containing objects 
from those containing clutter.  The method is a novel combination of genetic 
algorithm based optimization of a criterion function that involves classification 
error and the number of features that are used for the discrimination of object 
from natural clutter in SAR images.  The criterion (fitness) function proposed in 
this chapter is based on minimum description length principle and it compares 
favorably with other three fitness functions.  The joint distribution of features is 
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assumed to follow Gaussian distribution.  The criterion function is optimized in a 
closed-loop with a Bayesian classifier evaluating the performance of each set of 
features.  The GA used in feature selection is adaptive in the sense that it can 
automatically adapt the parameters such as crossover rate and mutation rate based 
on the efficiency of GA search in the feature space.  As compared to this work, 
the feature selection presented in [19, 34] for target vs. natural clutter 
discrimination measures exhaustively the performance of each combination of the 
features by the Pd (probability of detection) versus Pfa (probability of false alarm) 
plot produced by it.  The higher the Pd and the lower the Pfa, the better the 
combination of features.  

4.3 Technical Approach 
The purpose of the genetic algorithm (GA) based feature selection approach 
presented in this chapter is to select a set of features to discriminate objects from 
natural clutter false alarms in SAR images.  The approach includes four stages: 
rough object detection, feature extraction from the potential object regions, 
feature selection based on the training data and the final discrimination.  The first 
stage is based on the Lincoln Lab ATR system and the second stage uses some 
features (first 10 of the 20 features) used in their system [19, 34, 35].  In the 
feature selection stage, GA is used to select a best feature subset, defined as a 
particular set of features, which is the best in discriminating the object from the 
natural clutter false alarm.  The diagram for feature selection is given in Figure 
4.1. 

4.3.1 Feature Evaluation  

Adding more features does not necessarily improve discrimination performance.  
An important goal is to choose the best set of features from the discriminating 
features that are available.  Before we do the feature selection, it is appropriate to 
give a set of feature evaluation criteria, which measure the discrimination 
capability of each feature or a combination of several features.  
 

 

 

 

 

 

 

 
Figure 4.1. System diagram for feature selection. 
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• Divergence:  Divergence is basically a form of the Kulback-Liebler distance 
measure between density functions.  If we assume that the object as well as the 
natural clutter feature vectors follow the Gaussian distributions respectively, that 
is, ),( 11 ΣuN  and ),( 22 ΣuN , where 1u  and 2u are mean values and 1Σ  and 2Σ  
are covariance matrices, respectively, the divergence can be computed as follows: 

(4.1) 

 

One major drawback of the divergence d12 is that it is not easily computed, unless 
the Gaussian assumption is employed.  For SAR imagery, the Gaussian 
assumption itself is in question. 

• Scatter Matrices:  These criteria are based upon the information related to 
the way feature vector samples are scattered in the l-dimensional feature space.  
Two kinds of scatter matrices are defined.  They are within-class scatter matrix 
and between-class scatter matrix.  Within-class scatter matrix for M classes is, 
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the different combinations of these two scatter matrices, a set of class separability 
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feature vector samples within each class are scattered compactly and the feature 
vector samples from different classes are far away from one another, we expect 
the value for J would be high.  This also implies that the features we choose have 
high discrimination. 

• Feature vector evaluation using a classifier:  Another method for feature 
evaluation depends on a specific classifier.  The task of feature selection is to 
select or determine a set of features, that when fed into a classifier, will let the 
classifier achieve the best performance.  So it makes sense to relate the feature 
selection procedure with a particular classifier used.  During the training time, the 
features extracted from the training data are available.  What the feature selection 
algorithm does is to select a subset of these features and feed them into the 
classifier and see the classification result.  Then the goodness of each feature 
subset is indicated by its classification error rate. 
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4.3.2 Various Criteria for Fitness Functions 
GA is used to seek the smallest (or the least costly) subset of features for which 
the classifier’s performance does not deteriorate below a certain specified level 
[26, 36]. The basic system framework is shown in Figure 4.1.        

When the error of a classifier is used to measure the performance, a subset of 
features is defined as feasible if the classifier's error rate is below the so-called 
feasibility threshold.  We search for the smallest subset of features among all 
feasible subsets.  During the search, each subset can be coded as a d-element bit 
string (d is the total number of features).  The ith element of the bit string assumes 
0 if the ith feature is excluded from the subset and 1 if it is present in the subset. 

In order for the GA to select a subset of features, a fitness function must be 
defined to evaluate the performance of each subset of features.  GA explores the 
space of feature subsets to try to find a minimum subset of features with good 
classification performance. 

4.3.2.1 Fitness Function Based on MDL 

In this chapter, the classifier is fixed, which is a Bayesian classifier, but the set of 
features that is input into the classifier is a variable.  In order to apply MDL to 
feature selection, the features selected by GA are viewed as the model used to 
describe the training data.  Selecting more features means that a more complex 
model is used to approximate the data.  Although a complex model may have 
perfect performance on the training data, it may not be a good model, since it may 
be overly sensitive to statistical irregularities and idiosyncrasies of the data and 
causes accidental noise to be modeled as well, leading to the poor performance on 
the unseen test data. 

To fix the above problem, minimum description length principle is used to 
prevent the overfitting of the training data by an overly complex model.  Roughly 
speaking, the MDL states that among all the models approximating the data to or 
above certain accuracy, the simplest one is the best one.  To restrict the model 
from growing too complex while maintaining the description accuracy, the cost of 
describing a set of data with respect to a particular model is defined as the sum of 
the length of the model and the length of the data when encoded using the model 
as a predictor for the data.  The description length of data-to-model error is 
defined as the combined length of all the data items failed to be described by the 
model.  GA is used to select the subset of features minimizing the above cost.  
Here, both description lengths are measured in bits and the details of the coding 
techniques are relevant.  The trade-off between simplicity and complexity of both 
lengths is that if a model is too simple, it may not capture the characteristics of the 
data and lead to increased error-coding length, if a model is too complicated, it 
may model the noise and become too sensitive to minor irregularities to give 
accurate prediction of unseen data.  MDL states that among the given set of 
models, the one with the minimum combined description length of both the model 
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and data-to-model error is the best model and can perform best on the unseen test 
data. 

Based on MDL, the following fitness function is proposed for GA to maximize: 

(4.2) 

where ci is a chromosome coding the selected set of features, f is the total number 
of features extracted from each training data, k is the number of features selected 
(ci  has k bits of 1 and f – k bits of  0), n is the total number of data items in the 
training set and ne is the number of data items misclassified.  It is easy to see that 
the fewer the number of features selected and smaller the number of data items 
misclassified, the larger the value of fitness function. 

We now give a brief explanation of the above fitness function.  Suppose a sender 
and a receiver both know all the data items and their order in the training set and 
also they agree in advance on the feature extractor used to extract the f features 
from each data item and the classifier used to classify each data based on the 
features extracted.  But only the sender knows the label (object or clutter) of each 
data item.  Now, the sender wants to tell the receiver the label of each data item.  
One simple approach to do this is to send a bit sequence of n bits where 1 
represents an object and 0 represents a clutter.  If n is large, then the 
communication burden will be heavy.  In order to reduce the number of bits to be 
transmitted, in an alternative approach, the sender can tell the receiver which 
features can be used to classify the data, since the receiver can extract the features 
and apply the classifier on the features extracted to get the label of each data item.  
There are a total of f features and log(f) bits are needed to encode the index of 
each feature.  If k features are selected, k log(f) bits are needed in order to inform 
the receiver which features should be extracted.  However, some data items may 
be misclassified, so the sender needs to tell the receiver which data items are 
misclassified so that the receiver can get the correct labels of all the data in the 
training set.  Since there are a total of n data items, log(n) bits are needed to 
encode the index of each data item.  If ne data items are misclassified, then 
nelog(n) bits are needed to convey to the receiver the indices of these 
misclassified data items.  If the set of features selected is effective in 
discriminating objects from clutters, ne is very small, thus the number of bits 
needs to be transmitted is much smaller than n.  

4.3.2.2 Other Fitness Functions  

Three other fitness functions are also used to drive GA and their performances are 
compared with that of the fitness function based on MDL. 

In order to define two other fitness functions, we first define the following penalty 
function [36]: 

(4.3) 
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where e is the error rate (the number of misclassified data item divided by the 
total number of data items in the training set) of the classifier, t is the feasibility 
threshold and m is called the “tolerance margin”.  In this chapter, t = 0.01 and m = 
0.005.  It can be seen that if e < t, p(e) is negative and as e approaches zero, p(e) 
slowly approaches its minimal value.  Note also that p(t) = 0 and p(t + m) = 1.  
For greater values of the error rate, this penalty function rises quickly toward 
infinity. 

The second fitness function is defined as follows: 

(4.4) 

 

This fitness function considers only the error rate of the classifier and does not 
care about how many features are selected.  It can be predicted that this fitness 
function may lead to the selection of many features.  

The third fitness function takes the complexity of a model, that is the number of 
features selected, into consideration.  It combines the complexity of the model and 
its performance on the training data and is defined as follow: 

 

 

where γ ranges from 0 to 1 and determines the relative importance of the number 
of features selected and the error rate of the classifier.  If we want to use fewer 
features, we can assign a large value to γ; if we think lower error rate is more 
important, we can assign a small value to γ.  In the following experiments, γ takes 
value 0.1, 0.3 and 0.5.  

The fourth fitness function is defined as follows: 

(4.6) 

 

where k is the number of features selected by GA and γ ranges from 0 to 1 and is a 
parameter that determines the relative importance of the number of feature 
selected and the error rate of the classifier.  

4.3.3 System Description 

4.3.3.1  CFAR Detector 

A two-parameter CFAR detector is used as a prescreener to identify potential 
objects in the image on the basis of radar amplitude.  A guard area around a 
potential object pixel is used for the estimation of clutter statistics.  The amplitude 
of the test pixel is compared with the mean and standard deviation of the clutter 
according to the following rule: 
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(4.7) 
 

where tX  is the amplitude of the test pixel, cû  is the estimated mean of the clutter 
amplitude, cσ̂  is the estimated standard deviation of the clutter amplitude, and 

CFARK  is a constant threshold value that defines the false-alarm rate. 

Only those test pixels whose amplitude is much higher than that of the 
surrounding pixels are declared to be object pixels.  The higher we set the 
threshold value of CFARK , the more a test pixel must stand out from its 
background for it to be declared as an object pixel.  Because a single object can 
produce multiple CFAR detections, the detected pixels are grouped together if 
they are within an object-sized neighborhood.  The CFAR detection threshold in 
the prescreener is set relatively low to obtain a high initial probability of object 
detection.  It is the responsibility of the discriminator to capture and reject those 
escaping clutter false alarms from the prescreener stage.  An example SAR image 
and the corresponding detection results are shown in Figure 4.2. 

 

 

 

 

 

 

 

4.3.3.2 Feature Extractor  

First, an object-sized rectangular template is used to determine the position and 
orientation of the detected object [37].  The algorithm slides and rotates the 
template until the energy within the template is maximized.  Then a set of features 
is extracted from the object-sized template or the region of interest.  This set of 
features is used to discriminate the objects from the natural clutters.  First ten 
features are the same as those used in [19].  All the features from eleven to twenty 
are not used in their work, they are general features used in pattern recognition 
and object recognition. 

• The standard-deviation feature (feature 1):  The standard deviation of the 
data within the template is a statistical measurement of the fluctuation of the pixel 
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(a) Example SAR image. (b) Detection result. 

Figure 4.2. SAR image and the CFAR detection result. 
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intensities.  If we use ),( arP  to represent the radar intensity in power from range 
r and azimuth a, the standard deviation can be calculated as follows: 

 

 where              (4.8) 

   

and N is the number of pixels in the region. 

Objects usually exhibit much larger standard deviation than natural clutters, as 
illustrated by Figure 4.3. 

 

 

 

 

 

 

 

 

• The fractal dimension feature (feature 2):  The fractal dimension of the 
pixels in the region of interest provides information about the spatial distribution 
of the brightest scatterers of the detected object.  It complements the standard-
deviation feature, which depends only on the intensities of the scatterers, not on 
their spatial locations. 

The first step in applying the fractal-dimension concept to a radar image is to 
select an appropriately sized region of interest, and then convert the pixel values 
in the region of interest to binary.  One method of performing this conversion is to 
select the N brightest pixels in the region of interest and convert their values to 1, 
while converting the rest of pixel values to 0.  Based on these N  brightest pixels, 
the fractal dimension is defined by using the following formula: 

(4.9) 

 

where M1 represents the minimum number of 1-pixel-by-1-pixel boxes that cover 
all N brightest pixels in the region of interest (This number is obviously equal to 
N) and M2 represents the minimum number of 2-pixel-by-2-pixel boxes required 
to cover all N brightest pixels. 

The bright pixels for a natural clutter tend to be widely separated, thus produce a 
low value for the fractal dimension, while the bright pixels for an object tend to be 
closely bunched, thus a high value for the fractal dimension is expected, which is 

(b) A typical natural clutter image with  
standard deviation 4.5187. 

 

(a) A typical object image with  
standard deviation 5.2832. 

 
Figure 4.3. Example of the standard deviation feature. 
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illustrated by Figure 4.4.  Figure 4.4(a) shows an object image.  In Figure 4.4(b), 
the 50 brightest pixels from the object image are tightly clustered, and 22 2×2-
pixel boxes are needed to cover them, which results in a high fractal dimension of 
1.2.  Figure 4.4(c) shows a natural clutter image.  In Figure 4.4(d), the 50 
brightest pixels from this natural clutter are relatively isolated, and 46 2×2-pixel 
boxes are needed to cover them, which results in a low fractal dimension of 0.29.  

 

 

 

 

 

 

 

• Weighted-rank fill ratio feature (feature 3):  This textual feature measures 
the percentage of the total energy contained in the brightest scatterers of a 
detected object.  The weighted-rank fill ratio is defined as follows: 
 

(4.10) 

 

This feature attempts to exploit the fact that power returns from most objects tend 
to be concentrated in a few bright scatters, whereas power returns form natural-
clutter false alarms tend to be more diffuse.  The weighted-rank fill ratio values of 
the object in Figure 4.3(a) and the clutter in Figure 4.3(b) are 0.3861 and 0.2321 
respectively. 

• Size-related feature (features 4 - 6):  The three size-related features utilize 
only the binary image created by the morphological operations on the CFAR 
detection result. 

1. The mass feature is computed by counting the number of pixels in the 
morphological blob. 

2. The diameter is the length of the diagonal of the smallest rectangle that 
encloses the blob. 

3. The square-normalized rotational inertia is the second mechanical moment 
of the blob around its center of mass, normalized by the inertia of an equal 
mass square.  

In the experiments, I find the size features are not effective in scenarios where the 
objects are partially occluded or hidden.  After the prescreener stage, the size and 
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Figure 4.4. Example of the fractal dimension feature. 
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the shape of the detected morphological blob can be arbitrary.  For the clutter, 
there is also no ground to assert that the resulting morphological blob will exhibit 
a certain amount of coherence.  The experimental results in Figure 4.5 show the 
arbitrariness of the morphological blobs for objects as well as clutters. 

• The contrast-based features (features 7 - 9):  The CFAR statistics is 
computed for each pixel in an object-shaped blob to create a CFAR image.  Then 
the three features can be derived as follows: 

1. The maximum CFAR feature is the maximum value of pixels in the CFAR 
image contained within an object-sized blob. 

2. The mean CFAR feature is the average pixel value of pixels in the CFAR 
image taken over an object-shaped blob. 

3. The percent bright CFAR feature is the percentage of pixels within an object-
sized blob that exceed a certain CFAR value. 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum CFAR feature, the mean CFAR feature and the percent bright 
CFAR feature values of the object in Figure 4.3(a) are 55.69, 5.53 and 0.15, 
respectively, and these feature values of the clutter in Figure 4.3(b) are 10.32, 
2.37 and 0.042, respectively.  We can see that CFAR feature values for an object 
are much larger than those for a natural clutter false alarm. 

• The count feature (feature 10):  The count feature is very simple; it counts 
the number of pixels that exceeded the threshold T and normalize this value by the 
total possible number of pixels in an object blob.  The threshold T is set to the 

(a) The left-hand side figures represent 
the object images and the right-hand 
figures represent their corresponding 
morphological blobs. 

(b) The left-hand side figures represent 
the clutter images and the right-hand 
figures represent their corresponding 
morphological blobs. 

Figure 4.5. Examples of the size feature for (a) object and (b) clutter. 
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quantity corresponding to the 98th percentile of the surrounding clutter.  The 
count feature values of the object in Figure 4.3(a) and the clutter in Figure 4.3(b) 
are 0.6 and 0.1376, respectively.  We can see that the count feature value for an 
object is much larger than that for a natural clutter false alarm.  This makes sense 
because the intensity values of the pixels belonging to an object stand out from 
the surrounding clutter. 

The following ten features (four projection features, three distance features and 
three moment features) are common features used in image processing and object 
recognition.  They are extracted from binary images resulting from the CFAR 
detection.  In these images, foreground pixels (pixels with value 1) are potential 
object pixels.  

• Projection features (features 11 – 14):  four projection features are extracted 
from each binary image: 

1. horizontal projection feature:  project the foreground pixels on a horizontal 
line (x axis of image) and compute the distance between the leftmost point 
and the rightmost point. 

2. vertical projection feature:  project the foreground pixels on a vertical line (y 
axis of image) and compute the distance between the uppermost point and the 
lowermost point. 

3. major diagonal projection feature:  project the foreground pixels on the major 
diagonal line and compute the distance between the upper leftmost point and 
the lower rightmost point. 

4. minor diagonal projection feature:  project the foreground pixels on the minor 
diagonal line and compute the distance between the lower leftmost point and 
the upper rightmost point. 

The average values of horizontal, vertical, major and minor diagonal projection 
features of all the clutter images, I collected, are approximately 60.0, 60.0, 90.0 
and 90.0, respectively.  Their corresponding values for the object images are 34.5, 
29.5, 46.7 and 47.8, respectively. It can be seen that the feature values for the 
clutters are larger than those for the objects.  This result is reasonable, since the 
bright pixels of a natural clutter tend to be widely separated.  This has already 
been shown by the fractal dimension feature value. 

• Distance features (features 15 – 17):  three distance features are extracted 
from each binary image.  Before computing distance features, the centroid of all 
the foreground pixels in a binary image is computed first. 

1. minimum distance:  compute the distance from each foreground pixel to the 
centroid and select the minimum one. 

2. maximum distance:  compute the distance from each foreground pixel to the 
centroid and select the maximum one. 
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3. average distance:  compute the distance from each foreground pixel to the 
centroid and get the average value of all these distances. 

The average values of minimum, maximum and average distance features of all 
the clutter images I collected are approximately 40.0, 70.0 and 60.0, respectively.  
Their corresponding values of the object images are 3.8, 26.7 and 11.5, 
respectively.  It can be seen that the feature values for the clutters are larger than 
those for the objects.  This result is reasonable, since the bright pixels of a natural 
clutter tend to be widely separated. 

• Moment features (features 18 – 20):  three moment features are extracted 
from each binary image.  All three moments are central moments, so before 
computing moment features, the centroid of all the foreground pixels in a binary 
image is computed first.  

The central moments can be expressed as: 
 

 

where ),( yx  is the centroid and p and q are integers. 

Moments 220220 , µµµ and  are also call horizontal, vertical and diagonal second-
order moment features, respectively.  The average values of horizontal, vertical 
and diagonal second-order moment features of all the clutter images I collected 
are approximately 910.0, 910.0 and 374020.0, respectively.  Their corresponding 
values of the object images are 80.5, 46.7 and 4021.6, respectively.  It can be seen 
that the feature values for the clutters are larger than those for the objects.  This 
result is reasonable, since the bright pixels of a natural clutter tend to be widely 
separated. 

4.3.3.3 GAs for Feature Selection  

The genetic algorithm is an optimization procedure that operates in binary search 
spaces (the search space consists of binary strings).  A point in the search space is 
represented by a finite sequence of 0’s and 1’s, called a chromosome.  The 
algorithm manipulates a finite set of chromosomes, the population, in a manner 
resembling the mechanism of natural evolution.  Each chromosome is evaluated 
to determine its “fitness,” which determines how likely the chromosome is to 
survive and breed into the next generation.  The probability of survival is 
proportional to the chromosome’s fitness value.  Those chromosomes, which have 
higher fitness values are given more chances to “reproduce” by the processes of 
crossover and mutation.  The function of crossover is to mate two parental 
chromosomes to produce a pair of offspring chromosomes.  In particular, if a 
chromosome is represented by a binary string, crossover can be implemented by 
randomly choosing a point, called the crossover point, at which two chromosomes 
exchange their parts to create two new chromosomes.  Mutation randomly 
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perturbs the bits of a single parent to create a child.  This procedure can increase 
the diversity of the population.  Mutations can be performed by flipping randomly 
one or more bits in chromosomes.  In this chapter, an adaptive genetic algorithm 
is implemented to automatically adapt the parameters such as crossover rate and 
mutation rate based on the performance of GA.  To be specific, if the fitness value 
of the best individual is not improved for 3 or 5 generations in a row, GA will 
automatically raise the mutation rate to increase the diversity of the population.  
Also, elitism mechanism is adopted such that the best individual (set of features 
selected) is copied from generation to generation when performing reproduction. 

In this chapter, there are 20 features as described earlier.  Each feature is 
represented as a bit in the genetic algorithm.  There are 220 possible combinations 
of these features. 

4.4 Experiments 
SAR images from MSTAR public data (object and clutter data) are used to 
generate 1008 object chips (small SAR images containing object) and 1008 clutter 
chips (small SAR images containing clutter) of size 120×120. SAR images that 
are downloaded from the website of MIT Lincoln Lab are also used.  From these 
SAR images, 40 object chips and 40 clutter chips of size 120×120 are generated.  
By adding these two sets of images, 1048 object chips and 1048 clutter chips are 
obtained.  Some of the chips are used in training and the rest are used in testing.  
The chips used in training are randomly selected.  The GA selects a good subset 
of features from the 20 features described previously to classify a SAR image 
chip into either an object or a clutter.  The CFAR detector is used in the 
prescreener stage to detect the potential object regions.  Since the ground truth 
about the identity of each chip (whether it is an object chip or a clutter chip) is 
known, this allows us to construct a set of training data (training object data and 
training natural clutter false alarm data) for feature selection.  A set of 20 features 
is extracted from each potential object region and the feature selection is 
performed on the extracted features.  Finally in the testing stage the selected 
features are used to discriminate the objects from the natural clutter false alarms 
in the testing object and clutter chips. 

For the GA-based feature selection framework in this report, a Bayesian Classifier 
is adopted to classify the training data and the resulting error rate is used as the 
feedback into the feature selection algorithm.  The size of the population is 100, 
the initial crossover rate is 0.8 and the initial mutation rate is 0.01.  If the fitness 
value of the best individual is not improved for 3 generations in a row, GA 
increases the mutation rate by 0.02.  The mutation rate is reset to 0.01 when the 
fitness of the best individual is increased.  In order to reduce the training time, an 
error rate threshold ε is set.  The GA stops when either the error rate of the best 
set of features selected is below the specified threshold ε or the mutation rate is 
increased above 0.09. 
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A series of experiments are carried out to test the efficacy of GA in feature 
selection.  First, the MDL-based fitness function is used.  Then the other three 
fitness functions are used.  Finally, the performances of these fitness functions are 
compared and analyzed.  In order to have an objective comparison of various 
experiments, the GA is invoked ten times for each experiment with the same set 
of parameters and the same set of training chips.  Only the average performances 
are used for comparison. 

4.4.1  MDL-based Fitness Function 

Four experiments are performed with this fitness function.  In the first experiment, 
300 object chips and 300 clutter chips are used in training and 748 object chips 
and 748 clutter chips are used in testing, the error rate threshold value ε is 0.002; 
in the second experiment, 500 object chips and 500 clutter chips are used in 
training and 548 object chips and 548 clutter chips are used in testing, the error 
rate threshold value ε is 0.0015; in the third and fourth experiments, 700 object 
chips and 700 clutter chips are used in training and 348 object chips and 348 
clutter chips are used in testing, the error rate threshold value ε is 0.0015 and 
0.0011, respectively.  The features selected during training are used for 
classification during testing.  It is worth noting that the training chip set in the 
third and fourth experiments is the superset of that in the second experiment and 
the training chip set in the second experiment is the superset of that in the first 
experiment.  The object and clutter chips used during training are selected at 
random.  

Table 4.1 shows the experimental results where 300 object and 300 clutter chips 
are used in training. GA is invoked 10 times and each row records the 
experimental results from the corresponding invocation.  The last row records the 
average results of 10 runs.  The column “Best generation” records the generation 
number in which the best set of features is found and the column “Total 
generation” shows the total number of generations GA runs.  It can be seen that 
although the training error rate is 0.003 in each run, different features are selected.  
From the testing results, we can observe that sometimes clutter chips are 
misclassified as object chips.  In some runs, the same number of testing clutter 
chips are misclassified, but the clutter chips that are misclassified in each run are 
different.  The testing results show that GA finds an effective set of features to 
discriminate object from clutter.  Table 4.2 and Table 4.3 show the experimental 
results when 500 object and clutter chips and 700 object and clutter chips are used 
in training, respectively.  The results in Table 4.2 are very good. On the average, 
5.1 features are selected and both the training and testing error rate are very low.  
However, the results in Table 4.3 are not good.  Although the training and testing 
error rates are low, 9.2 features are selected on the average.  From Table 4.3, we 
can see that GA runs 4.9 generations on the average.  It is clear that GA stops 
prematurely.  The reason for the premature termination is that the error rate 
threshold value 0.0015 is high in this case, since there are 700 object chips and  
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Ob-
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Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 29 47 4 0100101001 

0000000000 
0.003 1 1 0.001 0 2 

2 9 27 6 0110001011 
0000100000 

0.003 1 1 0.011 0 16 

3 10 28 4 0100001001 
0100000000 

0.003 1 1 0.011 0 16 

4 43 61 4 0000001001 
0100100000 

0.003 1 1 0.005 0 7 

5 19 37 4 0101001001 
0000000000 

0.003 1 1 0.017 0 25 

6 13 31 4 0100001001 
1000000000 

0.003 1 1 0.007 0 10 

7 23 41 4 0100001001 
0010000000 

0.003 1 1 0.011 0 16 

8 6 24 6 0010011011 
0000100000 

0.003 1 1 0.011 0 16 

9 17 35 5 0100001001 
0011000000 

0.003 1 1 0.003 0 5 

10 11 29 5 0100001001 
0010100000 

0.003 1 1 0.005 0 7 

ave 18 36 4.6  0.003 1 1 0.0082 0 12 

 

Table 4.1. Experimental results with 300 training object and clutter chips.  (MDL, equation (4.2); ε 
= 0.002) 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
generation 

Total 
generation 

Number 
of 

features 

Features 
selected 

Training 
error 
rate Object Clutter 

Testing 
error 
rate Object Clutter 

1 17 35 5 0100001001 
1000100000 

0.002 1 1 0.006 0 7 

2 13 31 5 0100001001 
0000001001 

0.002 1 1 0.006 0 7 

3 19 38 5 0100001001 
0000011000 

0.002 1 1 0.006 0 7 

4 20 38 5 0100001001 
0000011000 

0.002 1 1 0.006 0 7 

5 10 28 5 0100001001 
0010100000 

0.002 1 1 0.006 0 7 

6 26 44 5 0100001001 
1100000000 

0.002 1 1 0.003 0 3 

7 25 43 5 0100001001 
0000010100 

0.002 1 1 0.007 0 8 

8 9 27 6 0000001011 
0000011010 

0.002 1 1 0.007 0 8 

9 8 26 5 0100001001 
0000011000 

0.002 1 1 0.006 0 7 

10 17 35 5 0001001001 
0011000000 

0.002 1 1 0.004 0 4 

ave 16.4 34.5 5.1  0.002 1 1 0.0057 0 6.5 

 

Table 4.2. Experimental results with 500 training object and clutter chips.  (MDL, equation (4.2); ε 
= 0.0015) 



Chapter 4:  GA-based Feature Selection for Object Detection 

 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Num-
ber of 
Fea-
tures 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

er 
1 10 28 6 0001001001 

1000001010 
0.0014 1 1 0.004 0 3 

2 19 37 5 0100001001 
0000001010 

0.0014 1 1 0.012 0 8 

3 17 35 5 0100001001 
0010100000 

0.0014 1 1 0.01 0 7 

4 16 34 6 0001011001 
0010001000 

0.0014 1 1 0.006 0 4 

5 16 34 5 0100001001 
0000011000 

0.0014 1 1 0.01 0 7 

6 19 37 5 0100001001 
0010100000 

0.0014 1 1 0.01 0 7 

7 10 28 5 0100001001 
0000010100 

0.0014 1 1 0.01 0 7 

8 15 33 5 0100001001 
0000011000 

0.0014 1 1 0.01 0 7 

9 10 28 6 0100011001 
1000010000 

0.0014 1 1 0.007 0 5 

10 23 41 5 0100001001 
0000001001 

0.0014 1 1 0.01 0 7 

ave 15.5 33.5 5.3  0.0014 1 1 0.0089 0 6.1 

 

Table 4.4. Experimental results with 700 training object and clutter chips.  (MDL, equation 
(4.2); ε = 0.0011) 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 8 8 9 0101101001 

1010001001 
0.0014 1 1 0.006 0 4 

2 9 9 10 1101001001 
1010101010 

0.0014 1 1 0.001 0 1 

3 7 7 7 0000001011 
0100101010 

0.0014 1 1 0.012 0 8 

4 2 2 10 1101001001 
0110011010 

0.0014 1 1 0.001 0 1 

5 5 5 8 0100001001 
0011111000 

0.0014 1 1 0.007 0 5 

6 2 2 7 1000011011 
0100001000 

0.0014 1 1 0.012 0 8 

7 5 5 10 1101001001 
0110101100 

0.0014 1 1 0.001 0 1 

8 3 3 10 1100101011 
0101010001 

0.0014 1 1 0.003 0 2 

9 4 4 11 1101011001 
1010111000 

0.0014 1 1 0.001 0 1 

10 4 4 10 1101001001 
0011111000 

0.0014 1 1 0.001 0 1 

ave 4.9 4.9 9.2  0.0014 1 1 0.0045 0 3.2 

 

Table 4.3. Experimental results with 700 training object and clutter chips.  (MDL, equation (4.2); ε 
= 0.0015) 
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700 clutter chips.  In order to force GA to explore the search space, the error rate 
threshold value is lowered to 0.0011 and the results are shown in Table 4.4.  
These results are much better than those in Table 4.3.  Only 5.3 features are 
selected on the average, although the average testing error rate is almost doubled.  
Considering both the test error rate and the number of features selected, the first 
run in Tables 4.1 and 4.4, and the sixth run in Table 4.2 yield the best results.  
Figure 4.6 shows how fitness changes as GA searches the feature subset space 
during these runs; Figure 4.7 shows how training error rate changes and Figure 
4.8 shows how the number of features selected changes. 

 

 

 

 

 

 

 

From the above experiments, we can see that the MDL-based fitness function and 
adaptive GA are very efficient in feature selection.  Only 4 to 6 features are 
selected on the average while the detection accuracy is kept high.        

 

 

 

 

 

 

 

 

 

(a) 300 training object  
and clutter chips. 

(b) 500 training object  
and clutter chips. 

(c) 700 training object  
and clutter chips. 

Figure 4.6.  Fitness values vs. generation number. 
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(a) 300 training object and 
clutter chips. 

(b) 500 training object and 
clutter chips. 

(c) 700 training object 
and clutter chips. 

Figure 4.7.  Error rates vs. generation number. 
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4.4.2 Other Fitness Functions 

For the purpose of objective comparison, the training chips in the following 
experiments are the same as those in the second experiment above.  500 object 
chips and 500 clutter chips are used in training and 548 object chips and 548 
clutter chips are used in testing. 

First, function (4.4) is used as the fitness function and GA is invoked 10 times.  
The error rate threshold value is 0.0015.  Table 4.5 shows the experimental 
results.  This function is only dependent on the error rate, so GA found a set of 
features with very low error rate quickly.  The selected features are shown by the 
“Number of features” and “Features selected” columns.  However, since the 
number of features is not taken into consideration by the fitness function, many 
features are selected.  More than 10 features are selected on the average over 10 
runs. 

Next, function (4.5) is used as the fitness function.  Three experiments are 
performed with this function, and the values of γ are 0.1, 0.3 and 0.5 in these three 
experiments respectively.  The error rate threshold is 0.0015.  Since this function 
considers the number of features selected, you can imagine that few features will 
be selected.  Tables 4.6, 4.7 and 4.8 show the corresponding experimental results 
when γ is 0.1, 0.3 and 0.5.  From Table 4.6, we can see that since the training  

 

 

 

 

 

(a) 300 training object and 
clutter chips. 

(b) 500 training object 
and clutter chips. 

(c) 700 training object 
and clutter chips. 

Figure 4.8. The number of features selected vs. generation number. 
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Table 4.5. Experimental results with 500 training object and clutter chips.  (penalty function, 
equation (4.4); ε = 0.0015) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Test-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

1 4 22 13 0111111011 
1100111000 

0.002 1 1 0.004 0 4 

2 11 11 10 1011011011 
0001100100 

0.001 1 0 0.005 0 5 

3 2 20 9 0101101001 
1011000100 

0.002 1 1 0.005 0 5 

4 4 22 11 1010011011 
0101011100 

0.002 1 1 0.004 0 4 

5 3 21 10 1110001011 
1010010100 

0.002 1 1 0.003 0 3 

6 10 10 9 0011011011 
0000110100 

0.001 1 0 0.005 0 5 

7 8 26 10 1101101001 
0011010010 

0.002 1 1 0.001 0 1 

8 2 20 11 1110101011 
0001001110 

0.002 1 1 0.003 0 3 

9 3 21 10 0110011011 
1101100000 

0.002 1 1 0.005 0 5 

10 3 21 9 1110011011 
0000110000 

0.002 1 1 0.008 0 9 

ave 5 19.4 10.2  0.0018 1 1 0.0043 0 4.4 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Test-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

1 18 36 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

2 12 30 2 0000001000 
0000001000 

0.007 1 6 0.007 0 8 

3 17 35 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

4 20 38 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

5 16 34 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

6 11 29 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

7 15 33 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

8 17 35 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

9 14 32 2 0000001001 
0000000000 

0.005 2 3 0.024 0 26 

10 12 30 2 0000001000 
0000001000 

0.007 1 6 0.007 0 8 

ave 15.2 33.2 2  0.0054 1.8 3.6 0.0206 0 22.4 

 

Table 4.6. Experimental results with 500 training object and clutter chips.  (penalty and  # 
of features, equation (4.5); γ = 0.1; ε = 0.0015) 
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Number of  
errors 

Number of  
errors 

 
Run 
No. 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 23 41 1 0000001000 

0000000000 
0.01 1 9 0.036 0 39 

2 20 38 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

3 11 29 2 1000001000 
0000000000 

0.005 1 4 0.033 0 36 

4 8 26 3 0000000010 
0010010000 

0.008 4 4 0.005 0 5 

5 30 48 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

6 14 32 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

7 25 43 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

8 20 38 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

9 22 40 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

10 27 45 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

ave 20 38 1.3  0.0093 1.3 8 0.0326 0 35.3 

 

Table 4.7. Experimental results with 500 training object and clutter chips.  (penalty and  # of 
features, equation (4.5); γ = 0.3; ε = 0.0015) 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera

-tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train
-ing 
error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 17 35 1 0000001000 

0000000000 
0.01 1 9 0.036 0 39 

2 29 41 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

3 22 40 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

4 15 33 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

5 32 50 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

6 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

7 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

8 23 41 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

9 9 27 2 0000000010 
0000001000 

0.012 5 7 0.011 0 12 

10 23 41 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

ave 19.2 37.2 1.1  0.01 1.5 8.8 0.0335 0 36.3 

 

Table 4.8. Experimental results with 500 training object and clutter chips.  (penalty and  # of 
features, equation (4.5); γ = 0.5; ε = 0.0015) 
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Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera

-tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train
-ing 
error 
rate 

Ob-
ject 

Clut-
ter 

Testin
g error 

rate Ob-
ject 

Clut-
ter 

1 21 39 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

2 16 34 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

3 14 32 2 0000100010 
0000000000 

0.01 7 3 0.006 0 7 

4 25 43 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

5 13 31 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

6 17 35 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

7 17 35 2 0000100010 
0000000000 

0.01 7 3 0.006 0 7 

8 33 51 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

9 22 40 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

10 12 30 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

ave 19 37 1.2  0.01 2.2 7.8 0.03 0 32.6 

 

Table 4.9. Experimental results with 500 training object and clutter chips.  (error rate and  # of 
features, equation (4.6); γ = 0.1; ε = 0.0015) 

 

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train-
ing 

error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 11 29 1 0000001000 

0000000000 
0.01 1 9 0.036 0 39 

2 27 45 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

3 17 35 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

4 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

5 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

6 11 29 1 0000001000 
0000000000 

0.019 7 12 0.028 0 31 

7 20 38 1 0000000010 
0000000000 

0.01 1 9 0.036 0 39 

8 30 48 1 0000000010 
0000000000 

0.019 7 12 0.028 0 31 

9 7 25 1 0000000010 
0000000000 

0.019 7 12 0.028 0 31 

10 12 30 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

ave 15.7 33.7 1  0.013 2.8 9.9 0.0336 0 36.3 

 

Table 4.10. Experimental results with 500 training object and clutter chips.  (error rate and  # 
of features, equation (4.6); γ = 0.3; ε = 0.0015) 
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error rate is low, the number of features selected accounts for a large percentage 
of the value of the fitness function, forcing GA to select only 2 features in each 
run.  However, the error rate for testing results is not encouraging.  It is more than 
0.02 on the average.  When γ is 0.3, the number of features account for a larger 
part of the value of the fitness function than when γ is 0.1, forcing GA to select 
almost only one feature.  Actually, in 8 runs, GA selects the best feature among 
all the 20 features (see Table 4.12) to discriminate object from clutter.  When γ is 
0.5, the number of features almost dominates the value of fitness function.  The 
same phenomenon occurs and the experimental results are shown in Table 4.8. 

Finally, function (4.6) is used as the fitness function.  Three experiments are 
performed with this function, and the values of γ are 0.1, 0.3 and 0.5 in these three 
experiments, respectively.  The error rate threshold is 0.0015.  Like the function 
(4.5), this function considers both the number of features selected and the error 
rate.  When γ is large, this function forces GA to select one feature.  Usually, the 
best feature is selected (see Table 4.12).  Tables 4.9, 4.10 and 4.11 show the 
corresponding experimental results when γ is 0.1, 0.3 and 0.5, respectively. 

To show that GA selects the best feature when the number of features dominates 
the fitness function, the efficacy of each feature in discriminating objects from 
clutters is examined.  The data used in examination are 500 object chips and 500 
clutter chips used in the above training.  The results are shown in Table 4.12.  

Number of  
errors 

Number of  
errors 

 
Run 
No. 

 

Best 
Genera-

tion 

Total 
Genera-

tion 

Number 
of 

features 

Features 
selected 

Train
-ing 
error 
rate 

Ob-
ject 

Clut-
ter 

Testing 
error 
rate Ob-

ject 
Clut-

ter 
1 25 43 1 0000000010 

0000000000 
0.019 7 12 0.028 0 31 

2 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

3 8 26 1 0000000010 
0000000000 

0.019 7 12 0.028 0 31 

4 11 29 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

5 8 26 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

6 15 33 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

7 9 27 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

8 12 30 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

9 29 47 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

10 24 42 1 0000001000 
0000000000 

0.01 1 9 0.036 0 39 

ave 15.2 33.2 1  0.013 2.2 9.4 0.0344 0 37.4 

 

Table 4.11. Experimental results with 500 training object and clutter chips.  (error rate and  # of 
features, equation (4.6); γ = 0.5; ε = 0.0015) 
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From this table, it can be seen that the best feature (feature 7, the maximum 
CFAR feature) is selected by GA. 
 

 

 

 

 

 

 

 

 

 

4.4.3 Comparison and Analysis 

Figure 4.9 shows the average performances of the above experiments pictorially.  
The X-axis is the average number of features selected and the Y-axis is the 
average training error rate.  The average number of features selected and average 
training error rate form a performance point and the performance is evaluated 
according to the location of a performance point.  A good performance point 
should have lower values of both the number of features and the training error.  
The three points shown as circles are the performance points when the MDL-
based fitness function is used and the rest are the performance points 
corresponding to other fitness functions. 

From the above experimental results, we can see that GA is capable of selecting a 
good set of features to discriminate objects from clutters.  The MDL-based fitness 
function is the best fitness function compared to three other functions.  Fitness 
function (4.4) doesn’t include the number of features.  Although GA can find a 
good set of features quickly driven by this function, many features are selected.  
This greatly increases the computational complexity in the testing phase.  Fitness 
functions (4.5) and (4.6) take the number of features selected into consideration.  
However, the number of features dominates the fitness function value, forcing GA 
to select only one or two features, leading to the unsatisfactory training and 
testing error rates.  In order to balance the number of features selected and the 

Number of errors Number of errors Feature 
 
 

Error rate 

Object Clutter 

Feature 
 

Error rate 

Object Clutter 

1 0.119 17 102 11 0.118 18 100 

2 0.099 16 83 12 0.111 6 105 

3 0.056 7 49 13 0.126 9 117 

4 0.057 17 40 14 0.131 7 124 

5 0.068 13 55 15 0.09 5 85 

6 0.354 0 354 16 0.069 3 66 

7 0.01 1 9 17 0.075 3 72 

8 0.5 480 20 18 0.209 0 209 

9 0.019 7 12 19 0.2 2 198 

10 0.073 15 58 20 0.244 0 244 

 

Table 4.12. Experimental results of using only one feature in discrimination.  (object chips = 500, 
clutter chips = 500) 
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error rate, parameter γ must be finely tuned.  This is not an easy task and it usually 
takes a lot of time.  The MDL-based fitness function is based on a sound theory 
and it balances these two terms very well.  Only a few features are selected while 
the training and testing error rates are kept low. 

 

 

 

 

 

 

 

 

 

 

 

In order to evaluate which features are more important than others using MDL-
based approach, let us combine the results of the first, second and fourth 
experiments.  Note that in the first, second and fourth experiments (shown in 
Tables 4.1, 4.2 and 4.4), GA are invoked for a total of 30 times.  Table 4.13 shows 
the number of times each feature is selected in these 30 runs.  It can be seen from 
Table 4.13 that the fractal dimension feature (feature 2), the maximum CFAR 
feature (feature 7) and the count feature (feature 10) are very useful in detecting 
objects in SAR images, and the standard deviation feature (feature 1) and the 
mean CFAR feature (feature 8) are not good.  The major diagonal projection 
feature (feature 13), the minimum distance feature (feature 15), the maximum 
distance feature (feature 16) and the average distance feature (feature 17) have 
low utility while other features have very low utility.  The results are consistent 
with those shown in Table 4.12.  Considered individually, the maximum CFAR 
feature (feature 7) is the best feature (see Table 12) and selected (in combination 
with other features) in all the 30 runs. 
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Figure 4.9. Average performances of various fitness functions. 
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4.5 Summary 
In this chapter, a GA feature selection algorithm is applied to a specific 
application domain to discriminate objects from natural clutter false alarms in 
SAR images.  Rough object detection, feature extraction, GA based feature 
selection and final discrimination are successfully implemented and good results 
are obtained.  The experimental results show that GA selected a good subset of 
features.  Also, an MDL-based fitness function is proposed and its performance is 
compared with three other fitness functions.  The experimental results show that it 
balances the number of features selected and the error rate very well and it is the 
best fitness function compared to other three fitness functions.  

 

Features  

1 2* 3 4 5 6 7* 8 9 10* 11 12 13 14 15 16 17 18 19 20 

Exp1 0 8 2 1 1 1 10 0 2 10 1 2 3 1 4 0 0 0 0 0 

Exp2 0 8 0 1 0 0 10 0 1 10 2 1 2 1 2 4 5 1 1 1 

Exp4 0 8 0 2 0 2 10 0 0 10 1 0 3 0 2 4 6 1 2 1 

Total 0 24 2 4 1 3 30 0 3 30 4 3 8 2 8 8 11 2 3 2 

 

Table 4.13. The number of times each feature is selected in Experiments 1, 2 and 4. 
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Chapter 5  

Learning Composite Features for 
Recognition Using Coevolutionary 
Genetic Programming 

This chapter investigates synthesizing composite features for object recognition.  
The basic task of object recognition is to identify the kinds of the objects in an 
image, and sometimes the task may include estimating the pose of the recognized 
objects.  One of the key approaches to object recognition is based on features 
extracted from images.  These features capture the characteristics of the object to 
be recognized and are fed into a classifier to perform recognition.  The quality of 
object recognition is heavily dependent on the effectiveness of features.  
However, it is difficult to extract good features from real images due to various 
factors, including noise.  More importantly, there are many features that can be 
extracted.  What are the appropriate features and how to synthesize composite 
features useful to the recognition from primitive features?  The answers to these 
questions are largely dependent on the intuitive instinct, knowledge, experience 
and the bias of human experts.  

In this chapter, the effectiveness of co-evolutionary genetic programming (CGP) 
in generating composite operator vectors for object recognition is investigated.  
The elements of a composite operator vector are synthesized composite operators. 
A composite operator is represented by a binary tree whose internal nodes are the 
pre-specified primitive operators and leaf nodes are primitive features.  It is a way 
of combining primitive features.  With each element evolved by a sub-population 
of CGP, a composite operator vector is cooperatively evolved by all the sub-
populations.  By applying composite operators, corresponding to each sub-
population, to the primitive features extracted from images, composite feature 
vectors are obtained.  These composite feature vectors are fed into a classifier for 
recognition.  The primitive features are real numbers and they are designed by 
human experts based on the type of objects to be recognized.  It is worth noting 
that the primitive operators and primitive features are decoupled from the CGP 
mechanism that generates composite operators.  The users can tailor them to their 
own particular recognition task without affecting the other parts of the system.
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Thus, the method and the recognition system are flexible and can be applied to a 
wide variety of images. 

Motivation 
The recognition accuracy of an automatic object recognition system is determined 
by the quality of the feature set used.  Usually, it is the human experts who design 
the features to be used in recognition.  Handcrafting a set of features requires 
human ingenuity and insight into the characteristics of the objects to be 
recognized and in general, it is very difficult to identify a set of features that 
characterize a complex set of objects.  Typically, many types of features are 
explored before a recognition system can be built to perform the desired 
recognition task.  There are a lot of features available and these features may be 
correlated, making the designing and selection of appropriate features a very time 
consuming and expensive process.  Sometimes, it is even impossible to figure out 
and extract simple features that are effective in recognition directly from images.  
At this time, synthesizing composite features that are useful to the current 
recognition task from those simple primitive features available becomes 
extremely important.  The process of synthesizing composite features can often be 
dissected into some primitive operations on the primitive features.  It is usually 
the human experts who, replying on their knowledge, rich experience, figure out a 
smart way to combine these primitive operations to yield good composite 
features.  The task of finding good composite features is equivalent to finding 
good points in the composite feature space.  However, the ways of combining 
primitive features are almost infinite, leading to a huge composite feature space.  
It is obvious that a smart search strategy is a must in order to find good composite 
features in such a huge space.  The human experts can try a very limited number 
of combination due to slow speed of human being and usually only the 
conventional combinations are tried due to knowledge, experience and even the 
bias of human experts.  CGP, on the other hand, may try many unconventional 
combinations and in some cases it is these unconventional combinations that yield 
exceptionally good recognition performance.  Also, the inherent parallelism of 
CGP and the speed of computers allow a much larger portion of the search space 
to be explored by CGP than that explored by human experts and this greatly 
enhances the chance of finding good composite features. 

5.2 Related Research 
Genetic programming (GP) has been used in image processing, object detection 
and recognition.  Harris et al. [5] apply GP to the production of high performance 
edge detectors for 1D signals and image profiles.  The method is also extended to 
the development of practical edge detectors for use in image processing and 
machine vision.  Ebner et al. [38] use GP to automate the process of chaining a 
series of well-known image processing operators to perform image processing.  
Poli et al. [6] use GP to develop effective image filters to enhance and detect 
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features of interest or to build pixel-classification-based segmentation algorithm.  
In chapters 2 and 3 and [39], GP is used to generate composite operators for 
object detection.  The primitive operators and primitive feature images used are 
very basic and domain-independent, so the object detection method can be applied 
to a wide variety of images.  The experimental results showed that GP is a viable 
way of synthesizing composite features from primitive features for object 
detection and ROI extraction.  Howard et al. [9] applied GP to automatic 
detection of ships in low resolution SAR imagery using an approach that evolves 
detectors.  The detectors are algebraic formulae involving the values at pixels 
belonging to a small region surrounding the pixel undergoing the test and the 
detectors evolved by GP compare favorably in accuracy to those obtained using a 
neural network.  Roberts and Howard [10] use GP to develop automatic object 
detectors in infrared images.  They present a multi-stage approach to address 
feature detection and object segregation and the detectors developed by GP do not 
require images to be pre-processed.  Stanhope and Daida [8] used GP paradigms 
for the generation of rules for target/clutter classification and rules for the 
identification of objects.  GP is used to select relevant features from a previously 
defined feature set and evolve logical expression on comparisons of the selected 
features to both real-valued constants and themselves to create a linear classifier.  
Krawiec and Bhanu [40, 41] present a method for the automatic synthesis of 
recognition procedures chaining elementary operations for computer vision and 
pattern recognition tasks based on cooperative coevolution and linear genetic 
programming.  Each sub-population evolves a part of the recognition procedure 
and all the sub-populations coevolve the whole recognition procedure by selecting 
the best individual from each sub-population and chaining them together.  Their 
experimental results show that genetic programming is effective in synthesizing 
recognition procedure from elementary image processing operations and they also 
show that coevolutionary genetic programming is superior to regular one-
population genetic programming. 

Unlike the work of Stanhope and Daida, the primitive operators in this 
chapter are not logical operators, but operators on real numbers and the composite 
operators are binary trees of primitive operators on real numbers, not binary trees 
of logical operators [70].  They use GP to evolve logical expressions and the final 
outcome of the logical expression determines the type of the object under 
consideration (for example, 1 means target and 0 means clutter).  In this chapter, 
CGP is used to evolve composite feature vectors to be used by a Bayesian 
classifier [42] and each sub-population is responsible for evolving a specific 
composite feature in the composite feature vector.  The classifier evolved by GP 
in their system can be viewed as a linear classifier, but the classifier evolved by 
CGP here is a Bayesian classifier determined by the composite feature vectors 
from training images.  Unlike the work of Bhanu and Krawiec, composite 
operators in this chapter are binary tree of primitive operators and primitive 
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features, whereas the recognition procedures in their system are linked list of 
simple image processing operations. 

5.3 Technical Approach 
In the CGP-based approach, individuals are composite operators represented by 
binary trees with primitive operators as internal nodes and primitive features as 
leaf nodes.  The search space is the set of all possible composite operators.  The 
search space is huge and it is extremely difficult to find good composite operators 
from this vast space unless one has a smart search strategy.  The whole system is 
divided into training and testing parts, which are shown in Figure 5.1(a) and (b), 
respectively.  During training, CGP runs on training images and evolves 
composite operators to obtain composite features.  Since a Bayesian classifier is 
completely determined by the feature vectors from training images, so both the 
composite features and the classifier are learned by CGP. 

 

 

 

 

 

 

 

 

 

 

 

5.3.1 Design Considerations 
• The set of terminals:  The set of terminals are 20 primitive features used in 
chapter 4.  The first 10 of them are designed by MIT Lincoln lab to capture the 

Figure 5.1. System diagram for object recognition using co-evolutionary genetic programming.  
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particular characteristics of synthetic aperture radar (SAR) imagery and are found 
useful for object detection.  The other 10 features are common features used 
widely in image processing and computer vision.  The 20 features are:  (1) 
standard deviation of image; (2) fractal dimension and (3) weighted rank fill ratio 
of brightest scatterers; (4) blob mass; (5) blob diameter; (6) blob inertia; (7) 
maximum and (8) mean values of pixels within blob; (9) contrast brightness of 
blob; (10) count; (11) horizontal, (12) vertical, (13) major diagonal and (14) 
minor diagonal projections of scatterers; (15) maximum, (16) minimum and (17) 
mean distances of scatterers from their centroid; (18) moment µ20, (19) moment 
µ02 and (20) moment µ22 of scatters.  For detailed description, please refer to 
chapter 4. 

• The set of primitive operators:  A primitive operator takes one or two real 
numbers, performs a simple operation on them and outputs the result.  Currently, 
12 primitive operators shown in Table 5.1 are used, where a and b are real 
numbers and input to an operator and c is a constant real number stored in an 
operator. 

 

 

 

 

 

 

• The fitness measure:  the fitness of a composite operator vector is computed 
in the following way:  apply each composite operator of the composite operator 
vector on the primitive features of training images to obtain composite feature 
vectors of training images and feed them to a Bayesian classifier.  The recognition 
rate of the classifier is the fitness of the composite operator vector.  To evaluate a 
composite operator evolved in a sub-population (see Figure 5.2), the composite 
operator is combined with the current best composite operators in other sub-
populations to form a complete composite operator vector where composite 
operator from the ith sub-population occupies the ith position in the vector and the 
fitness of the vector is defined as the fitness of the composite operator under 
evaluation.  The fitness values of other composite operators in the vector are not 
affected.  When sub-populations are initially generated, the composite operators 
in each sub-population are evaluated separately without being combined with 
composite operators from other sub-populations.  After each generation, the 

Table 5.1. Twelve primitive operators. 

Primitive 
Operator 

Description Primitive 
Operator 

Description 

ADD (a, b) Add a and b. ADDC (a, c) Add constant value c to a. 
SUB (a, b) Subtract b from a. SUBC (a, c) Subtract constant value c from a. 
MUL (a, b) Multiply a and b. MUL (a, c) Multiply a with constant value c. 
DIV (a, b) Divide a by b. DIVC (a, c) Divide a by constant value c. 
MAX2 (a, b) Get the larger of a and b. MIN2 (a, b) Get the smaller of a and b. 
SQRT (a) Return a if a ≥ 0; oth-

erwise, return a−− . 

LOG (a) Return log(a) if a ≥ 0; otherwise, 
return – log(-a). 
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composite operators in the first sub-population are evaluated first, then the 
composite operators in the second sub-population and so on. 

 

 

 

 

 

 

• Parameters and termination:  The key parameters are the number of sub-
population N, the population size M, the number of generations G, the crossover 
and mutation rates, and the fitness threshold.  GP stops whenever it finishes the 
specified number of generations or the performance of the Bayesian classifier is 
above the fitness threshold.  After termination, CGP selects the best composite 
operator of each sub-population to form the learned composite operator vector to 
be used in testing. 

5.3.2   Selection, Crossover and Mutation 
The CGP searches through the space of composite operator vectors to generate 
new composite operator vectors.  The search is performed by selection, crossover 
and mutation operations.  The initial sub-populations are randomly generated.  
Although sub-populations are cooperatively evolved (the fitness of a composite 
operator in a sub-population is not solely determined by itself, but affected by the 
composite operators from other sub-populations), selection is performed only on 
composite operators within a sub-population and crossover is not allowed 
between two composite operators from different sub-populations. 

• Selection:  The selection operation involves selecting composite operators 
from the current sub-population.  In this chapter, tournament selection is used.  
The higher the fitness value, the more likely the composite operator is selected to 
survive. 

• Crossover:  Two composite operators, called parents, are selected on the basis 
of their fitness values.  The higher the fitness value, the more likely the composite 
operator is selected for crossover.  One internal node in each of these two parents 
is randomly selected, and the two subtrees rooted at these two nodes are 
exchanged between the parents to generate two new composite operators, called 
offspring.  It is easy to see that the size of one offspring (i.e., the number of nodes 
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Figure 5.2. Computation of fitness of jth composite operator of ith subpopulation.  
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in the binary tree representing the offspring) may be greater than both parents if 
crossover is implemented in such a simple way.  To prevent code bloat, we 
specify a maximum size of a composite operator.  If the size of one offspring 
exceeds the maximum size, the crossover is performed again until the sizes of 
both offspring are within the limit.  

• Mutation:  To avoid premature convergence, mutation is introduced to 
randomly change the structure of some composite operators to maintain the 
diversity of sub-populations.  Candidates for mutation are randomly selected and 
the mutated composite operators replace the old ones in the sub-populations.  
There are three mutations invoked with equal probability: 

1. Randomly select a node of the composite operator and replace the subtree 
rooted at this node by another randomly generated binary tree 

2. Randomly select a node of the composite operator and replace the primitive 
operator stored in the node with another primitive operator randomly 
selected from the primitive operators of the same number of input as the 
replaced one.  

3. Randomly selected two subtrees of the composite operator and swap them.  
Of course, neither of the two sub-trees can be a sub-tree of the other. 

5.3.3 Generational Co-evolutionary Genetic Programming 
Generational co-evolutionary genetic programming is used to evolve composite 
operators.  The GP operations are applied in the order of crossover, mutation and 
selection.  Firstly, two composite operators are selected on the basis of their 
fitness values for crossover.  The two offspring from crossover are kept aside and 
won’t participate in the following crossover operations on the current sub-
population.  The above process is repeated until the crossover rate is met.  Then, 
mutation is applied to the composite operators in the current sub-population and 
the offspring from crossover.  Finally, selection is applied to select some 
composite operators from the current sub-population and combine them with the 
offspring from crossover to get a new sub-population of the same size as the old 
one.  In addition, an elitism replacement method is adopted to keep the best 
composite operator from generation to generation.  

• Generational Co-evolutionary Genetic Programming: 

0. randomly generate N sub-populations of size M and evaluate each composite 
operator in each sub-population individually. 

1. for gen = 1 to generation_num do 
2. for i =1 to N do  
3. keep the best composite operator in sub-population Pi. 
4. perform crossover on the composite operators in Pi until the crossover 

rate is satisfied and keep all the offspring from crossover. 
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5. perform mutation on the composite operators in Pi and the offspring  
from crossover with the probability of  mutation rate. 

6. perform selection on Pi to select some composite operators and combine 
them with the composite operators from crossover to get a new sub-
population Pi’ of the same size as Pi.  

7. evaluate each composite operator Cj in Pi’. To evaluate Cj, select the cur-
rent best composite operator in each of the other sub-populations, com-
bine Cj with those N-1 best composite operators to form a composite op-
erator vecter where composite operator from the kth sub-population oc-
cupy the kth position in the vector (k=1, …, N). Run the composite opera-
tor vector on the primitive features of the training images to get compos-
ite feature vectors and use them to build a Bayesian classifier. Feed the 
composite feature vectors into the Bayesian classifier and let the recogni-
tion rate be the fitness of the composite operator vector and the fitness of 
Cj.  

8. let the best composite operator from Pi  replace the worst composite op-
erator in Pi’ and  let Pi = Pi’ 

9. Form the composite operator vector consisting of the best composite op-
erators from corresponding sub-populations and evaluate it. If its fitness 
is above the fitness threshold, goto 10. 

 endfor // loop 2 
 endfor  // loop 1 
10. select the best composite operator from each sub-population to form the 

learned  composite operator vector and output it. 

5.4 Experiments 
Various experiments are performed to test the efficacy of genetic programming in 
generating composite features for object recognition.  In this chapter, we show 
some selected examples.  All the images used in the experiments are real synthetic 
aperture radar (SAR) images.  These images are divided into training and testing 
images.  20 primitive features are extracted from each SAR image.  CGP runs on 
primitive features from training images to generate a composite operator vector 
and a Bayesian classifier.  The composite operator vector and the Bayesian 
classifier are tested against the testing images.  It is worth noting that the ground 
truth is used only during training.  The experiments are categorized into three 
classes:  (1) distinguishing man-made military objects from natural clutters, (2) 
distinguishing between 3 kinds of man-made military objects and (3) 
distinguishing between 5 kinds of man-made military objects.  For the purpose of 
objective comparison, CGP is invoked ten times for each experiment with the 
same set of parameters and the same set of training images.  Only the average 
performances are used for comparison.  Some of the parameters of CGP used 
throughout the experiments are shown in Table 5.2.  The maximum size of a 
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composite operator is 10 in experiment 1 and 20 in experiments 2 and 3.  The 
constant real number c stored in some primitive operators ranges from –20 to 20.   

 
 
 
 
 

 

 

5.4.1 Distinguish Object from Clutter 
• Data:  The data used here are the same as those used in chapter 4.  From 
MSTAR public real SAR images, 1048 SAR images containing objects and 1048 
SAR images containing natural clutters are generated.  These images have size 
120×120 and are called object images and clutter images, respectively.  An 
example object image and clutter image are shown in Figure 5.3, where white 
spots indicate scatterers with high magnitude.  300 object images and 300 clutter 
images are randomly selected as training images and the rest are used in testing.  

 

 

 

 

 

 
• Experiment 1:  First, the efficacy of each primitive feature in discriminating 
the objects from the clutters is examined.  Each kind of primitive features from 
training images is used to train a Bayesian classifier and the classifier is tested 
against the same kind of primitive features from the testing images.  The results 
are shown in Figure 5.4 and Table 5.3.  Feature contrast brightness of blob (9) is 
the best one with recognition rate 0.98. 
To show the efficacy of CGP in synthesizing effective composite features, we 
consider three cases:  only the worst two primitive features (blob inertia (6) and 
mean values of pixels within blob (8)) are used by CGP; five bad primitive 
features (blob inertia (6), mean values of pixels within blob (8), moments µ20 
(18), µ02 (19) and µ22 (20) of scatters) are used by CGP; 10 common features 

Sub-population size 50 Crossover rate 0.6 
Number of generation 50 Mutation rate 0.05 

Fitness threshold 1.0   
 

Table 5.2. Parameters of CGP used throughout the experiments. 

(b) A natural  
clutter image 

(a) An object  
image 

Figure 5.3. Example object and  
clutter SAR images. 
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(primitive features 11 to 20) not specifically designed to deal with SAR images 
are used by CGP during synthesis.  The number of sub-populations is 3, which 
means the dimension of the composite feature vector is 3.  The results are shown 
in Table 5.4 and Figure 5.5, where the horizontal coordinates are the number of 
primitive features used in synthesis and the vertical coordinates are the bins on the  

 

 

 

 

 

 

 

 

 

left show the training results and those on the right show the testing results.  The 
numbers above the bins are the average recognition rates over all ten runs.  Then 
the number of sub-population is increased from 3 to 5.  The same 2, 5 and 10 
primitive features are used as building blocks by CGP to evolve composite 
features.  The experimental results are shown in Table 5.5 and Figure 5.6.  
 

 

 

 

 

 

 

 

 

 

 

From Figures 5.5 and 5.6, it is obvious that composite feature vectors synthesized 
by CGP are very effective.  They are much better than the primitive features upon 
which they are built.  Actually, if both features 6 and 8 from the training images 
jointly form 2-dimensional primitive feature vectors to train a Bayesian classifier 

Feature 
Number 

Primitive Feature Recognition 
Rate 

Feature 
Number 

Primitive Feature Recognition  
Rate 

1 Standard deviation 0.88 11 Horizontal projection 0.90 
2 Fractal dimension 0.91 12 Vertical projection 0.91 
3 Weight-rank fill ratio 0.94 13 Major diagonal projection 0.89 
4 Blob mass 0.94 14 Minor diagonal projection 0.88 
5 Blob diameter 0.94 15 Minimum distance 0.92 
6 Blob inertia 0.66 16 Maximum distance 0.95 
7 Maximum CFAR 0.97 17 Mean distance 0.94 
8 Mean CFAR 0.49 18 Moment µ20 0.80 
9 Percent bright CFAR 0.98 19 Moment µ02 0.81 

10 Count 0.92 20 Moment µ22 0.75 

 

Table 5.3. Recognition rates of 20 primitive features. 

Recognition Rate 
2f 5f 10f 

Runs 

Training Testing Training Testing Training Testing 
1 0.99 0.980 0.992 0.992 0.965 0.983 
2 0.988 0.991 0.993 0.994 0.975 0.982 
3 0.988 0.989 0.993 0.987 0.978 0.987 
4 0.988 0.989 0.992 0.985 0.975 0.987 
5 0.988 0.989 0.978 0.987 0.975 0.989 
6 0.988 0.987 0.995 0.995 0.965 0.979 
7 0.988 0.990 0.992 0.992 0.973 0.983 
8 0.99 0.979 0.992 0.974 0.97 0.983 
9 0.99 0.979 0.992 0.993 0.968 0.983 
10 0.992 0.983 0.992 0.987 0.968 0.983 

Average 0.989 0.986 0.991 0.989 0.971 0.984 
 

Table 5.4. Experimental results with 3 sub-populations. 
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for recognition, the recognition rate is 0.668 on the testing images; if features 6, 8, 
18, 19, and 20 jointly form 5-dimensional primitive feature vectors, the 
recognition rate is 0.947; if all the last 10 primitive features are used, the 
recognition rate is 0.978.  The average recognition rates of composite feature 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vectors are better than all the above results.  Figure 5.7 shows the composite 
operator vector evolved by CGP maintaining 3 sub-populations in the 6th run 
when 5 primitive features are used, where PFi means the primitive feature i and so 
on. 

 

 

 

 

 

Recognition  Rate 
2f 5f 10f 

Runs 

Training Testing Training Testing Training Testing 
1 0.988 0.981 0.993 0.995 0.975 0.992 
2 0.99 0.980 0.995 0.993 0.972 0.979 
3 0.988 0.983 0.995 0.991 0.97 0.981 
4 0.99 0.982 0.993 0.991 0.983 0.986 
5 0.992 0.983 0.993 0.987 0.977 0.990 
6 0.988 0.982 0.995 0.992 0.98 0.990 
7 0.99 0.984 0.993 0.993 0.977 0.981 
8 0.992 0.981 0.995 0.992 0.975 0.986 
9 0.99 0.984 0.995 0.990 0.982 0.986 
10 0.992 0.983 0.993 0.996 0.975 0.987 

Average 0.99 0.982 0.994 0.992 0.977 0.986 
 

Table 5.5. Experimental results with 5 sub-populations. 
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Figure 5.5. Experimental results  
with 3 sub-populations. 

Figure 5.6. Experimental results  
with 5 sub-populations. 

(MULC (MULC (SUBC 
(SQRT (LOG PF8))))) 

 
(a) Composite operator 1 

(DIV (DIVC (DIVC 
(DIV PF18 PF6))) PF8)  

 
(b) Composite operator 2 

(SQRT PF8) 
 

(c) Composite operator 3 

Figure 5.7. Composite operator vector learned by CGP. 
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5.4.2 Recognize Objects 
• Data:  Five objects (BRDM2 truck, D7 bulldozer, T62 tank, ZIL131 truck and 
ZSU anti-aircraft gun) are used in the experiments.  For each object, 210 real SAR 
images under 15°-depression angle and various azimuth angles between 0° and 
359° are collected from MSTAR public data.  Figure 5.8 shows one optical and 
four SAR images of each object.  From Figure 5.8, we can see that it is not easy to 
distinguish SAR images of different objects.  Since SAR images are very 
sensitive to azimuth angles and training images should represent the 
characteristics of an object under various azimuth angles, 210 SAR images of 
each object are sorted in the ascending order of their azimuth angles and the first, 
fourth, seventh, tenth SAR images and so on are selected for training.  Thus, for 
each object, 70 SAR images are used in training and the rest are used in testing.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Optical and SAR images of BRDM2. 

(b) Optical and SAR images of D7. 

(c) Optical and SAR images of T62. 

(d) Optical and SAR images of ZIL. 

(e) Optical and SAR images of ZSU. 

Figure 5.8. Five military objects used in recognition. 



Chapter 5:  Learning Composite Features for Recognition Using Coevolutionary Genetic 
Programming 

 97

• Experiment 2 - Discriminate three objects:  CGP synthesizes composite 
features to recognize three objects: BRDM2, D7 and T62.  First, the efficacy of 
each primitive feature in discriminating these three objects is examined.  The 
results are shown in Table 5.6 and Figure 5.9.  Feature means values of pixels 
within blob (8) are the best primitive feature with recognition rate 0.73.  Three 
series of experiments are performed in which CGP maintains 3, 5 and 8 sub-
populations to evolve 3, 5 and 8-dimensional composite features, respectively.  
The primitive features used in the experiments are all the 20 primitive features 
and the last 10 primitive features.  The experimental results are shown in Tables 
5.7, 5.8 and 5.9.  Figures 5.10, 5.11 and 5.12 show the average performance, 
where 10f and 20f mean primitive features 11 to 20 and all the 20 primitive 
features, respectively.  The bins on the left show the training results and those on 
the right show the testing results.  The numbers above the bins are the average 
recognition rates over all ten runs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figures 5.10, 5.11 and 5.12, it is clear that the learned composite feature 
vectors are more effective than primitive features.  If all the 20 primitive features 
from the training images are used to form 20-dimensional primitive feature 
vectors to train a Bayesian classifier for recognition, the recognition rate is 0.96 
on the testing images.  This result is a little bit better than the average 
performance shown in Figure 5.10 (0.94), but the dimension of the feature vector 
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Figure 5.11. Recognition rates  
with 5 sub-populations. 
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Figure 5.12. Recognition rates  
with 8 sub-populations. 

Figure 5.9. Recognition rates  
of 20 primitive features. 

Figure 5.10. Recognition rates  
with 3 sub-populations. 
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is 20.  However, the dimensions of composite feature vectors in Figures 5.10 and 
5.11 are just 3 and 5 respectively.  If the dimension of composite feature vector is 
increased from 3 to 5 and 8, the CGP results are better.  If the last 10 primitive  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature 
Number 

Primitive Feature Recognition 
Rate 

Feature 
Number 

Primitive Feature Recognition  
Rate 

1 Standard deviation 0.376 11 Horizontal projection 0.414 
2 Fractal dimension 0.662 12 Vertical projection 0.545 
3 Weight-rank fill 

ratio 
0.607 13 Major diagonal projec-

tion 
0.460 

4 Mass 0.717 14 Minor diagonal projec-
tion 

0.455 

5 Diameter 0.643 15 Minimum distance 0.505 
6 rotational inertia 0.495 16 Maximum distance 0.417 
7 Maximum CFAR 0.588 17 Mean distance 0.376 
8 Mean CFAR 0.726 18 Moment µ20 0.421 
9 Percent bright 

CFAR 
0.607 19 Moment µ02 0.443 

10 Count 0.633 20 Moment µ22 0.512 

 

Table 5.6. Recognition rates of 20 primitive features. 

Recognition  Rate 
10f 20f 

Runs 

Training Testing Training Testing 
1 0.895 0.836 0.981 0.967 
2 0.886 0.829 0.967 0.948 
3 0.867 0.848 0.952 0.921 
4 0.910 0.831 0.957 0.945 
5 0.857 0.843 0.962 0.926 
6 0.910 0.843 0.967 0.936 
7 0.852 0.862 0.981 0.938 
8 0.871 0.838 0.976 0.936 
9 0.876 0.860 0.967 0.952 

10 0.871 0.843 0.981 0.956 
Average 0.880 0.843 0.969 0.943 

 

Table 5.7. Experimental results with 3 sub-populations. 
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features are used, the recognition rate is 0.81.  From these results, we can see that 
the effectiveness of the primitive features has an important impact on the 
effectiveness of the composite features synthesized by CGP.  With effective 
primitive features, CGP will synthesize better composite features.  Figure 13 
shows the composite operator vector evolved by CGP with 5 sub-populations in 
the 10th run using 20 primitive features.  The size of the first and second 
composite operators is 20.  The size of the third one and last one are 9 and 15, 
respectively.  The fourth composite operator is just primitive feature 11.  The 
primitive features used by the learned composite operator vector are primitive 
features 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 20.  If all these 13 primitive features 
form 13-dimensional primitive feature vectors for recognition, the recognition rate 
is 0.96 

Recognition  Rate 
10f 20f 

Runs 

Train-
ing 

Test-
ing 

Train-
ing 

Test-
ing 

1 0.919 0.864 0.990 0.969 
2 0.914 0.860 0.981 0.955 
3 0.914 0.845 0.995 0.964 
4 0.943 0.852 0.990 0.943 
5 0.910 0.845 0.990 0.962 
6 0.919 0.843 0.990 0.952 
7 0.919 0.881 0.995 0.960 
8 0.919 0.874 0.986 0.967 
9 0.919 0.845 0.986 0.960 

10 0.929 0.857 0.995 0.974 
Aver-
age 

0.921 0.857 0.990 0.961 

 

Table 5.8. Experimental results with 5 sub-
populations. 

Recognition  Rate 
10f 20f 

Runs 

Train-
ing 

Test-
ing 

Train-
ing 

Test-
ing 

1 0.976 0.888 1.0 0.967 
2 0.962 0.860 1.0 0.971 
3 0.952 0.9 1.0 0.976 
4 0.967 0.876 1.0 0.964 
5 0.967 0.871 1.0 0.967 
6 0.952 0.845 0.995 0.979 
7 0.967 0.852 1.0 0.979 
8 0.957 0.874 0.995 0.95 
9 0.957 0.867 1.0 0.964 

10 0.967 0.869 0.995 0.983 
Aver-
age 

0.962 0.870 0.999 0.97 

 

Table 5.9. Experimental results with 8 sub-
populations. 

(PF11) 

(DIV (MULC (SUB (SUB (DIVC 
(SQRT PF6)) (MULC (SUB PF18 
(MULC (SUB PF18 (SQRT PF4)))))) 
(SQRT PF6))) (MIN2 PF12 PF19)) 

(DIV (MULC (ADD (ADDC (MULC 
(MUL (MIN2 (ADDC (DIV PF20 
PF4)) PF14) PF3))) (LOG (ADDC 
(DIV PF20 PF4))))) (DIVC PF4)) 

(a) Composite operator 1 (b) Composite operator 2 

(DIV (MIN2 (SUBC 
(SUBC PF11)) (MAX2 
PF7 PF8)) PF8) 

(LOG (ADDC (LOG (DIV (SUBC 
(LOG (DIV (SUBC (LOG PF5)) 
(SUBC PF5)))) (MUL PF2 PF5))))) 

(c) Composite operator 3 (d) Composite  
operator 4 

(e) Composite operator 5 

Figure 5.13. Composite operator vector learned by CGP with 5 sub-populations. 
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• Experiment 3 – Discriminate five objects:  With more objects added, the 
recognition becomes more difficult.  This can be seen from Table 5.10 and Figure 
14, which show the efficacy of each primitive feature in discriminating these five 
objects.  Feature blob mass (4) is the best primitive feature with recognition 0.49.  
If all the 20 primitive features from the training images are used jointly to form 
20-dimensional primitive feature vectors to train a Bayesian classifier for 
recognition, the recognition rate is 0.81 on the testing images; if only the last 10 
primitive features are used, the recognition rate is 0.62.  This number is much 
lower, since the last 10 features are common features and are not designed with 
the characteristics of SAR images taken into consideration. 

 

Table 5.10. Recognition rates of 20 primitive features. 
 

 

 

 

 

 

 

 

 

 

 

 

Two series of experiments are performed in which CGP maintains 5 and 8 sub-
populations to evolve 5 and 8-dimensional composite features for recognition.  
The primitive features used in the experiments are all the 20 primitive features 
and the last 10 primitive features.  The maximum size of composite operators is 
20.  The experimental results are shown in Tables 5.11 and 5.12. Figure 5.15 
shows the average recognition performance.  The left two bins in columns 10f and 
20f correspond to 5 sub-populations and the right two bins correspond to 8 sub-

Feature 
Number 

Primitive Feature Recognition 
Rate 

Feature 
Number 

Primitive Feature Recognition  
Rate 

1 Standard deviation 0.224 11 Horizontal projection 0.273 
2 Fractal dimension 0.473 12 Vertical projection 0.343 
3 Weight-rank fill ratio 0.361 13 Major diagonal projec-

tion 
0.281 

4 Mass 0.486 14 Minor diagonal projec-
tion 

0.265 

5 Diameter 0.404 15 Minimum distance 0.277 
6 rotational inertia 0.346 16 Maximum distance 0.294 
7 Maximum CFAR 0.379 17 Mean distance 0.266 
8 Mean CFAR 0.471 18 Moment µ20 0.277 
9 Percent bright CFAR 0.449 19 Moment µ02 0.267 

10 Count 0.453 20 µ 0.34 
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Figure 5.14. Recognition rates  
of 20 primitive features. 

Figure 5.15. Recognition rates with 5 (left 
two bins) and 8 (right two bins) sub-
populations. 
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populations.  The bins showing the training results are to the left of those showing 
the testing results.  The numbers above the bins are the average recognition rates 
over all ten runs.  

From Figure 5.15, we can see that when the dimension of the composite feature 
vector is 8, the performance of the composite features is good and it is better than 
using all 20 (0.81) or 10 (0.62) primitive features upon which the composite 
features are built.  When the dimension of the composite feature vector is 5, the 
recognition is not satisfactory when using just 10 common features as building 
blocks.  Also, when the dimension is 5, the average performance is a little bit 
worse than using all 20 or 10 primitive features, but the dimension of the 
composite feature vector is just one-fourth or half of the number of primitive 

  

 

 

 

 

 

 

 

 

 

 

 

 

features, saving a lot of computational burden in recognition.  When all the 20 
primitive features are used and CGP has 8 sub-populations, the composite 
operators in the best composite operator vector evolved have sizes 19, 1, 16, 19, 
15, 7, 16 and 6, respectively and they are shown in Figure 5.16.  The primitive  

 

 

 

 

 

Recognition Rate 
10f 20f 

Runs 

Train-
ing 

Test-
ing 

Train-
ing 

Test-
ing 

1 0.691 0.594 0.84 0.727 
2 0.674 0.581 0.831 0.741 
3 0.706 0.627 0.866 0.75 
4 0.697 0.594 0.846 0.756 
5 0.666 0.563 0.869 0.777 
6 0.671 0.549 0.863 0.787 
7 0.654 0.546 0.829 0.747 
8 0.683 0.577 0.837 0.753 
9 0.691 0.573 0.874 0.794 
10 0.674 0.587 0.88 0.803 

Aver-
age 

0.681 0.579 0.854 0.764 

 

Table 5.11. Experimental results with 5 
sub-populations. 

Recognition Rate 
10f 20f 

Runs 

Train-
ing 

Test-
ing 

Train-
ing 

Test-
ing 

1 0.769 0.621 0.929 0.824 
2 0.791 0.63 0.926 0.816 
3 0.794 0.63 0.929 0.803 
4 0.791 0.624 0.941 0.845 
5 0.774 0.614 0.931 0.809 
6 0.774 0.647 0.911 0.809 
7 0.794 0.64 0.903 0.832 
8 0.774 0.623 0.943 0.842 
9 0.754 0.641 0.94 0.847 
10 0.763 0.631 0.909 0.823 

Aver-
age 

0.778 0.630 0.926 0.825 

 

Table 5.12. Experimental results with 8 
sub-populations. 
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features used by the synthesized composite operator vector are primitive features 
2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19 and 20.  If all these 16 primitive 
features from the training images directly form 16-dimensional primitive feature 
vectors to train a Bayesian classifier for recognition, the recognition rate is 0.80 
on the testing images, which is lower than the average performance of the 
composite feature vector shown in Figure 5.15. 

5.4.3 Discussions 
The above experiments show that CGP is a viable tool to synthesize effective 
composite features from primitive features for object recognition and the learned 
composite features outperform the primitive features or any combination of 
primitive features upon which they are evolved.  The effectiveness of composite 
features learned by CGP is dependent on the effectiveness of primitive features.  
The usefulness of CGP is that it can evolve composite features that are more 
effective than the primitive ones upon which they are evolved.  To achieve the 
same recognition rate, the number of composite features needed is smaller than 
the number of primitive features needed (one-fourth or half), thus, reducing the 
computational expenses during run-time recognition. 

5.5   Summary 
This chapter investigates synthesizing composite features for object recognition.  
Our experimental results using real SAR images show that CGP can evolve 
composite features that are more effective than the primitive features upon which 
they are built.  To achieve the same recognition performance of primitive features, 

(MIN2 PF10 (MIN2 (MULC (MUL 
PF9 (MIN2 (DIVC PF10) (MUL 
PF9 (DIVC PF10))))) (MIN2 (MUL 
PF9 (DIVC PF10)) PF10))) 

(PF3) 
(SUB (SUBC (SUB PF14 PF18)) 
(MAX2 (MAX2 (MAX2 PF14 
PF8) PF14) (MAX2 PF14 (MAX2 
PF14 PF5)))) 

(a) Composite operator 1. (b) Composite operator 2. (c) Composite operator 3. 

(SQRT (DIV PF10 (SQRT (MAX2 (MULC 
(SUBC (DIV PF5 PF5))) (MAX2 (SUBC 
(MULC (SUBC (MULC (DIV PF15 PF5))))) 
PF10)))))  

(LOG (MUL (LOG (SUB (ADD PF16 
(SQRT (LOG (MUL (ADD PF16 PF16) 
PF12)))) PF12)) PF20)) 

(d) Composite operator 4. (e) Composite operator 5 

(SUB (LOG (DIVC 
PF2)) (DIV PF9 
PF16)) 

(ADDC (ADD PF18 (ADD (MULC (LOG 
PF18)) (MIN2 (SUB PF2 PF11) (SUB 
PF18 (SUB PF11 PF2)))))) 

(SQRT (SQRT 
(SQRT (SQRT 
(SQRT PF4))))) 

(f) Composite operator 6. (g) Composite operator 7. (h) Composite operator 8. 

Figure 5.16. Composite operator vector learned by CGP. 
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fewer composite features are needed and this reduces the computational burden 
during recognition.  However, primitive features still have a significant impact on 
the effectiveness of the evolved composite features.  How to let CGP evolve 
effective composite features using general primitive features is the focus of 
subsequent chapters. 
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Chapter 6 

Feature Synthesis for Recognition 
Using Linear Genetic Programming 

In this chapter, we present a novel method for learning complex 
concepts/hypotheses directly from raw training data.  The task addressed here 
concerns data-driven synthesis of recognition procedures for real-world object 
recognition task.  The method uses linear genetic programming to encode 
potential solutions expressed in terms of elementary operations, and handles the 
complexity of the learning task by applying cooperative coevolution to 
decompose the problem automatically.  The training consists in coevolving 
feature extraction procedures, each being a sequence of elementary image 
processing and feature extraction operations.  Extensive experimental results 
show that the approach attains competitive performance for 3-D object 
recognition in real synthetic aperture radar (SAR) imagery. 

6.1 Introduction  
Visual learning is a challenging domain for machine learning (ML) for several 
reasons.  

• Firstly, visual learning is a complex task, that usually requires problem 
decomposition, which is nontrivial in itself.  

• Secondly, the visual training data is represented in a way that is inconvenient 
for most standard ML methods, and requires use of specialized procedures and 
operators to access, aggregate, and transform the input.  

• Thirdly, the amount of data that have to be processed during the training 
process is usually much higher than in standard ML applications.  This imposes 
significant constraints on the effectiveness of the hypothesis space search.  

• Finally, the real-world image data is usually noisy and contains plenty of 
irrelevant components that have to be sieved out in the learning process.
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The approach for recognizing objects in real-world images described in this 
chapter addresses all these issues and attempts to solve these problems by using 
important ideas from machine learning, evolutionary computation (EC), and 
computer vision (CV), and combining them in a novel way. 

6.2 Motivation, Related Work and Contribution 

6.2.1 Motivation 
The primary motivation for the research described in this chapter is the lack of 
general methodology for the design and development recognition systems.  The 
design of recognition system for most real-world tasks is tedious, time-consuming 
and expensive.  Though satisfactory in performance in constrained situations, the 
handcrafted solutions are usually limited in scope of applicability and have poor 
adaptation ability in practical applications.  As the complexity of the task of 
object recognition by computer increases, the above limitations become severe 
obstacles for the development of solutions to real-world problems.  In some 
aspects, it is similar to the way the complexity of the software development 
process made the developers struggle until the software engineering came into 
being. 

6.2.2 Related Work 
The interest in visual learning research has been rather limited in both ML and 
CV communities, although the importances of vision in the development of 
intelligent systems have been well recognized.  In most approaches reported in the 
literature, adaptation is limited to parameter optimization that usually concerns a 
particular processing step, such as image segmentation, feature extraction, etc.  In 
those cases, learning does affect the overall recognition result in some complex 
manner.  

Current recognition systems are mostly open-loop and human input in the design 
of these systems is still predominant.  Only a few contributions, summarized in 
Table 1, attempt to close the feedback loop of the learning process at the highest 
(e.g., recognition) level and test the proposed approach in real-world setting.  
Note that, to the best of our knowledge, only few approaches [60,53,55,49] have 
been reported that learn using raw images as training data, and, therefore, produce 
the entire object recognition system.  Moreover, a majority of these methods [59, 
48, 50] use domain-specific knowledge and are highly specialized towards a 
particular application.  
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6.2.3 Contributions 
(a) We propose a general approach to automatic learning/synthesis of recognition 
procedures, that (i) uses raw image data for training, (ii) does not require domain-
specific knowledge, and (iii) attains competitive performance on a complex, real-
world object recognition task.  The learning proceeds given only database of 
training examples (images) partitioned into decision classes, and a set of general-
purpose image processing and feature extraction operators.  We use the 
cooperative coevolution [57], a new paradigm of EC, to handle the complexity of 
the task. 

(b) We use EC to perform the visual learning meant as the search in the space of 
image representations (features). 

(c) We adopt a variety of linear genetic programming (LGP) [43] for encoding of 
basic image processing and feature extraction procedures. 

(d) We use the real image data to demonstrate our approach and provide a 
comparison of performance between the coevolutionary approach and standard 
GA.  

 

 

Table 6.1. Related work in visual learning. 

Reference Approach Experimental task Training data 
(Draper, 1993) Learning recognition 

graphs 
Recognizing buildings Higher-level CV 

concepts 
(Segen, 1994) Learning of object 

models 
Hand gesture 
recognition 

Graphs extracted from 
images 

(Johnson, 1995) EC (GP) Locating hand in 
human body silhouette 

Binary silhouettes 

(Teller & Veloso, 
1997) 

EC (GP variant) Face recognition Raw images 
(grayscale) 

(Peng & Bhanu, 
1998a) 

Reinforcement 
learning 

Segmentation of 
in/outdoor scenes 

Raw images (color) 

(Peng & Bhanu, 
1998b) 

Delayed reinforcement 
learning 

Segmentation and 
feature extraction, 
in/outdoor scenes 

Raw images (color) 

(Krawiec, 2001) EC (GP) Handwriting 
recognition 

Raw images 
(grayscale) 

(Rizky et. al., 2002) Hybrid EC (GP+NN) Target recognition in 
radar modality 

1-D radar signals 

(Maloof et. al., 2003) Standard ML/PR 
classifiers 

Rooftop detection in 
aerial imagery 

Fixed set of scalar 
features 

This contribution EC (CC+LGP) Object recognition in 
radar modality 

Raw image (grayscale) 
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6.3 Technical Approach 
The proposed approach operates in a learning-from-examples scheme, with 
learner/inducer autonomously acquiring knowledge from the training examples 
(images).  The output of the learner is the synthesized recognition system that 
implements the feature-based recognition paradigm, with processing split into 
two stages:  feature extraction and decision making.  In particular, we include the 
image processing and feature extraction into the learning process (learning loop).  
The learner is, therefore, able to design the intermediate image representation that 
is appropriate for solving the task faced.  Note that, from machine learning 
viewpoint, this approach may be regarded as a kind of constructive induction [51]. 

6.3.1 Evolving Recognition Procedures  
The learning proceeds in the framework of evolutionary computation, where we 
evolve procedures being sequences of elementary image processing and feature 
extraction operations.  The evolutionary algorithm maintains a set of such 
procedures that are modified and mated during the evolutionary search (Figure 
6.1).  The procedures compete with each other by means of their fitness values 
that reflect the utility of particular representation for solving the problem.  The 
best procedure found in the evolutionary run becomes the final result of the 
procedure synthesis. 

 

Procedure evaluationEvolutionary algorithm

Basic image 
processing 
operators

Cross-validation 
experimentFitness

Feature vectors 
for all training 
images X∈D

Training 
images D

LGP procedure
interpreter

Fast
classifier

P

Population of image 
processing 
procedures

Genetic operators

ProcedureProcedure
Procedure P

ProcedureProcedure
Procedure

Learning
loop

 

Figure 6.1.  The overall architecture of our learning system. 

6.3.2 Representation of Feature Extraction Procedures  
An important issue that influences the performance of the proposed approach is 
the representation of individuals.  To speed up the convergence of the search 
process and provide the system with basic knowledge, we assume that certain 
elementary building blocks are given a priori to the learner in a form of basic 
image processing, feature extraction, and feature transformation operators.  
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A variety of linear genetic programming (LGP) [43] is chosen as the 
representation framework for the described system.  LGP is a hybrid of genetic 
algorithms (GA), and genetic programming (GP).  The LGP genome, i.e. the 
internal encoding of solution, is a fixed-length string of numbers that is 
interpreted as a sequential procedure.  The procedure is composed of (possibly 
parameterized) basic operations that work on input data/images.  The major 
advantage of this linear representation is low susceptibility to destructive 
crossovers, which is an important problem in GP. 

The details of LGP procedure encoding may be briefly summarized as follows:   

• Each procedure P is a fixed-length string of bytes [0.255] that encodes 
sequence of operators, i.e. image processing and feature extraction algorithms.   

• The operations work on registers (working variables) used for both input and 
output during procedure execution.  Image registers store processed images, 
whereas real-number registers store scalar features.  All image registers have 
the same dimensions as the input image.  Each image register, apart from 
storing the image, maintains a single rectangular mask.  A single learning 
parameter nreg controls both the number of image and number registers.  

• Each chunk of 4 consecutive bytes in the LGP procedure encodes a single 
operation with the following elements:  (i) operation code, (ii) mask flag – 
decides whether the operation should be global (work on the entire image) or 
local (limited to the mask), (iii) mask dimensions (ignored if mask flag is ‘off’), 
(iv) arguments – numbers (identifiers) of registers to fetch input data and store 
the result. 

An example of operation is morphological opening (operation code) using 
rectangular ROI (ROI flag ‘on’) of size 14 (ROI size) on the image fetched from 
image register #4 (pointed by argument #1), and storing the result in image 
register #5 (pointed by argument #2). 

There are currently approximately 70 operations implemented in the system, 
consisting mostly of Intel Image Processing [46] and OpenCV [47] libraries.  
They may be grouped into following categories:  image processing operations, 
mask – related operations, feature extraction operations, and arithmetic and logic 
operations. 

Given the above settings, an LGP procedure P processes a single input image I in 
following steps (see Figure 6.2): 

1. Initialization of register contents:  Each of the nreg image registers is set to I.  
The masks of images are set to consecutive local features (here: bright ‘blobs’) 
found in the image, so that mask in the ith image register encompasses ith local 
feature.  Real-number registers are set to the midpoint coordinates of 
corresponding masks; in particular, real-number registers 2i and 2i+1 store the 
x and y coordinates of the ith image mask. 
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2. Execution:  the operations encoded by P are carried out one by one.  As a 
result, the contents of image and real-number registers change (see example in 
Figure 6.2). 

3. Interpretation:  the values computed and stored in the real-value registers are 
interpreted as the output yielded by P for image I.  Let us denote by fi(P,I) the 
value stored by P in the real-value register #i when processing image I.  Then, 
for an image I, the LGP procedure outputs a vector of features:   

( ) ( ) ( )IPfIPfIPf
regn ,,,,,, 21 K  

 

LGP procedure

Image register #1

Image register #2

Real-number register #1

- operation code  - input argument - output argument - change of register’s value 

Op #1: Image 
norm

Op #2: Image 
thresholding

Op #3: Add scalar 
to each pixel

Initial register 
contents

Register contents 
after op#1

Register contents 
after op#2

Register contents 
after op#3

order of execution

 

Figure 6.2.  Illustration of the process of genome interpretation during LGP procedure execution. 

6.3.3 Cooperative Coevolution 
To cope with the inherent complexity of the visual learning task, we should find a 
way to decompose the problem into subtasks rather than trying to solve it in one 
step.  For that purpose, we use the cooperative coevolution, a variety of 
evolutionary computation.  

Evolutionary computation is widely recognized as a kind of metaheuristics, i.e. 
general-purpose search algorithm that provides suboptimal solutions in 
polynomial time.  However, according to Wolpert’s ‘no free lunch’ theorem [63], 
the search for an universal, best-of-all metaheuristic (optimization or learning) 
algorithm is futile.  In other words, the average performance of any metaheuristic 
over a set of all possible fitness functions is the same.  

In real world however, not all fitness functions are equally probable.  Most real 
problems are characterized by some features that make them specific.  The 
practical utility of a search/learning algorithm depends, therefore, on its ability to 
detect and benefit from that specificity.  In particular, the complexity of the 
problem and the way it may be decomposed are such characteristics.  
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In the last few years, cooperative coevolution (CC) [56], a variety of EC, has been 
reported as a promising approach to handle the increasing complexity of problems 
posed in artificial intelligence and related disciplines.  There are two important 
factors that make CC different from standard EC.  Firstly, instead of having just 
one population of individuals, in CC one maintains many of them.  Secondly, 
individuals in particular population encode only part of the solution to the 
problem, as opposed to EC, where each individual encodes complete solution to 
the problem.  Therefore, individuals from populations cannot be evaluated 
independently; they have to be combined with some representatives from the 
remaining populations to form a solution that can be evaluated.  That is why 
evolution proceeds here in each population independently, with the exception of 
the evaluation stage.  The joint evaluation scheme forces the individuals from 
particular populations to cooperate. 

Let n denote the number of populations.  To evaluate an individual X from ith 
population (Figure 6.3), it is temporarily combined with selected individuals (so 
called representatives) from the remaining populations j, j=1,…, n, j≠i, to form 
the solution.  Then, the entire solution is evaluated by means of the fitness 
function and X gets the resulting fitness value.  Evaluation of an individual from 
ith population does not affect the remaining populations.  As a result, the 
evolutionary search in a given population is driven by the context build up by the 
representatives of remaining populations.  The choice of representatives is, 
therefore, critical for the convergence of the evolution process.  Although many 
different variants are possible here, it has been shown that so-called CCA-1 
scheme works best [61].  In the first generation a representative of ith population is 
an individual drawn randomly from it.  In the following generations a 
representative of ith population is the best individual w.r.t. the previous 
generation.  
 

initialize populations 
loop 

for each population 
 for each individual X 
  combine X with representatives of  
   remaining populations to form solution S 
  evaluate S  
  assign fitness of S to X 
 end for 
 select mating candidates 
 recombine parents and use their offspring as the 
next  
 generation 
end for 

until stopping condition  
return best solution 

Figure 6.3.  Outline of cooperative coevolution algorithm. 
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The major advantage of CC is that it provides the possibility of breaking up a 
complex problem into components without specifying explicitly the objectives for 
them.  The way the individuals from populations cooperate emerges as the 
evolution proceeds.  In [44] we provided experimental evidence for the usefulness 
of CC in feature construction for standard machine learning problems.  Here we 
claim that CC is especially appealing also to the problem of visual learning, where 
the overall target is well defined, but there is no a priori knowledge about what 
should be expected at intermediate stages of processing, or such knowledge 
requires an extra effort from the designer.  

6.3.4 Combining Cooperative Coevolution and Linear Genetic 
Programming 
In the proposed approach, we use cooperative coevolution to scale down the task 
of LGP procedure synthesis (Section 6.2).  Although this can be done in many 
different ways, in this initial contribution we break up the task at genome level, 
with each population being responsible for optimizing a pre-defined fragment 
(substring) of LGP code of fixed length (Figure 6.4).  

... ...

Part synthesized by 
population #1

...…

Part synthesized by 
population #2

Part synthesized by 
population n

Solution (complete LGP procedure P) order of LGP execution
 

Figure 6.4.  Cooperation enforced by the concatenation of LGP procedure fragments developed by 
particular populations. 

The evaluation of an individual X from a given population consists in 
concatenating (always in the same order) its genome with the genomes of the 
representatives of the remaining populations to form a single LGP procedure P. P 
is then executed for all images from the training set (see Section 6.2).  The values 
computed by P for all training images  

( ) ( ) ( ) TIIPfIPfIPf
regn ∈∀,,,,,,, 21 K , 

together with the images’ class labels constitute the dataset T that is the basis for 
evaluation of an individual (so-called fitness set).  Then, a fast classifier is trained 
and tested on these data (see Figure 6.1), using predefined internal division of the 
training set into training-training set and training-testing set.  For this purpose, we 
used the naïve Bayesian classifier, modeling the input variables (features) by 
normal distribution.  The resulting predictive recognition ratio,  

T
T

in  images of # total
 from objects classifiedcorrectly  of # , 
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becomes the evaluation (fitness) of the solution-procedure P, and is subsequently 
assigned to the individual X. 

In this framework, particular populations can specialize in different stages of the 
recognition task.  In particular, we expect that the populations delegated to the 
development of the early parts of LGP procedure would tend to specialize in 
image processing, whereas the populations working on the final parts of the LGP 
procedure would focus on feature extraction and aggregation.  

6.4 Experiments 
The objective of the computational experiments is to explore the overall idea of 
LGP-based synthesis of recognition procedures using cooperative coevolution for 
search, in the context of demanding, real-world object recognition task using 
images of 3-D objects.  The results are obtained using a PC with single Pentium 
1.8 GHz processor. 

To provide a reference solution, we run a separate series of standard linear genetic 
programming (LGP), which, in fact, is a special case of CC that uses just one 
population.  To make this comparison reliable, we fix the total genome length (the 
total procedure length is the same for both CC and standard LGP), and fix the 
total number of individuals (the total number of individuals from all populations 
in CC is equal to the number of individuals maintained in the single population of 
the corresponding LGP run).  To estimate the performance the learning algorithm 
is able to attain in a limited time, evolution stops when its run time reaches the 
predefined limit.  

6.4.1 Parameter Setting 

Table 6.2.  Parameter setting. 

Parameter Setting 
Mutation operator one-point, prob. 0.5 

Crossover operator 
one-point, prob. 1.0, genome 
cutting is allowed at every 
point 

Selection operator tournament selection with 
tournament pool size = 5 

Number or registers (image 
and numeric) nreg 

8 

Number of populations n 3 
Selection of representatives CCA-1 (see Section 3.3) 
Time limit 1000 and 2000 seconds 
Procedure length  
(total genome length) 72 bytes, i.e., 18 operations 

Total population size 300 - 900 individuals 
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Table 6.2 shows the details of parameter settings used for the experiments 
described in this section.  All the remaining parameters were set to default values 
used in software packages ECJ [50] and WEKA [62]. 

6.4.2 Data and the Learning Task 
The proposed approach has been tested on the demanding task of object 
recognition in synthetic aperture radar (SAR) imagery.  The MSTAR public 
database [58] of SAR images taken at one foot resolution has been used as the 
data source.  The task posed to the system was to recognize three different objects 
(decision classes):  BRDM2, D7, and T62 (see Figure 6.4) at 15° depression angle 
and any azimuth (0°-359°).  

BRDM2 D7 T62

 

Figure 6.5.  The representatives of three decision classes.  Top row – visual photographs, bottom 
row - corresponding 48×48 pixel SAR images. 

The difficulties associated with the object recognition task in real SAR images 
are:  

• Non-literal nature of the data, i.e. radar images appear different than visual 
ones.  Bright spots on the images, called scattering centers, correspond to those 
parts of the object which reflect radar signal strongly.  No line features are 
present for these man-made objects at this resolution. 

• Low persistence of features under rotation (high rotation-variance). 

• High levels of noise. 

Table 6.3.  Dataset statistics. 

Class Total 
Training 

set
Aspect 
interval

Testing 
set

Aspect 
interval

BRDM2 188 64 5.62° 124 2.90°
D7 188 64 5.62° 124 2.90°
T62 131 64 5.62° 67 5.37°
Total 507 192 315

Number of images
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From the MSTAR database, 507 images of three objects classes (see Figure 6.5) 
have been selected.  The resulting set of images has been split into disjoint 
training and testing parts to provide reliable estimate of the recognition ratio of 
the learned recognition system (see Table 6.3).  This selection was aimed at 
providing uniform coverage of the azimuth (for each class, there is a training 
image for approximately every 5.62° of azimuth, and a testing image every 2.9°-
5.37°, on the average).  

The evolutionary process uses the training data for the learning/synthesis 
(precisely speaking, for the fitness computation), whereas the testing images are 
used for test only.  The original images have different sizes, so they are cropped 
to 48×48 pixels.  They are also complex (2-channel), but only theirs magnitude 
part is used in the experiments.  No other form of preprocessing (e.g., speckle 
removal) is applied. 

6.5 Results 
Table 6.4 compares the recognition performances obtained by the proposed 
coevolutionary approach (CC) and its regular counterpart (LGP), for two different 
limits imposed on the evolutionary learning time, 1000 and 2000 seconds.  To 
obtain statistical evidence, all evolutionary runs have been repeated 10 times, so 
the table presents the average performances of the best individuals found.  

The direct comparison resulting from Table 6.4 shows the superiority of the CC to 
LGP.  This applies to both the performance of the synthesized systems on the 
training as well as on the test set.  In all cases, the observed increases in accuracy 
are statistically significant with respect to the one-sided t-Student test at the 
confidence level 0.05.  Note that, within the same time limit, CC usually ran for a 
smaller number of generations on the average, due to the extra time required to 
maintain (perform selection and mating) in multiple populations. 

Figure 6.6 and Table 6.5 show, respectively, the receiver operating characteristics 
(ROC) curves and confusion matrices for the best individuals found in the first 
two experiments reported in Table 6.4 (time limit:  2000 seconds, procedure 

Parameter setting Recognition ratio 
Procedure length # of individuals 1000 seconds 2000 seconds Method 

# 
popu- 
lations Each 

population Total 
Each 

poplation Total 
Train 

set 
Test 
set 

Train 
Set 

Test 
Set 

CC 3 24 72 100 300 0.915 0.867 0.933 0.890 
LGP 1 72 72 300 300 0.806 0.747 0.843 0.801 
CC 3 24 72 300 900 0.927 0.874 0.940 0.883 

LGP 1 72 72 900 900 0.839 0.795 0.881 0.830 

Table 6.4.  The average performances of best individuals evolved in 10 independent runs for 1000 
and 2000 seconds training time limit. 
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length:  72, total # of individuals:  300).  Each curve shows the true positive ratio, 
i.e., the share of correctly recognized objects, as a function of false positive ratio, 
i.e., the share of incorrectly classified objects (without taking into account the 
non-recognized objects).  

These parametric characteristics have been obtained from the test set, by varying 
the confidence threshold of the naïve Bayesian classifier.  Approximately 40 
different values of the threshold have been used to obtain the curves.  The 
confidence threshold imposes a lower limit on the ratio of a posteriori 
probabilities of the first and the second most probable decision classes.  If, for a 
particular test example, the ratio is lower than threshold, no recognition decision 
is made and the example remains unclassified.  The ROC curves clearly show the 
superiority of the coevolution.  For instance, when no more than 5% of false 
positives are allowed, the procedure evolved using CC recognizes correctly 
approximately 91% images, whereas for LGP the accuracy is around 68%. 
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Figure 6.6.  ROC curves obtained for the test set using the best individuals found in the first two 
experiments shown in Table 6.4. 

Figure 6.7 presents the processing carried out on a BDRM2 image (taken at 
342.3° aspect) by the best procedure found in one of evolutionary runs.  For 
clarity, the picture shows the interpretation of the LGP procedure in a form of 
data-flow graph.  Note that this procedure uses only first four of the total of eight 
image registers available.  Each column of images in the picture shows the 
content changes of particular image register.  

The execution of the LGP procedure starts from the top and proceeds downwards 
through several intermediate image-processing steps.  Rounded and slanted boxes 
denote global (working on the entire image) and local (working on the marked 
rectangular ROI mask) image processing operations, respectively.  Eventually, 
two of the executed operations yield scalar features (the x coordinate of the 
shifted ROI (f1(X,I)), and the normalized difference of two processed images 
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f2(X,I)).  The overall processing ends with the final recognition decision made by 
the (previously trained on the training set) classifier; this includes a posteriori 
probabilities yielded by the naïve Bayesian classifier. 

The operations used in this particular are:  AbsDiff – pixel-wise absolute 
difference of a pair of images, HiPass3x3 – high pass convolution filter using 3×3 
mask, CrossCorrel – cross-correlation of a pair of images, PushROIX – (local) 
shifts the current image’s ROI to the closest bright ‘blob’ in horizontal direction,  
Gaussian – (local) image smoothing using 3×3 Gaussian mask, MorphClose – 
morphological closing operation, LogicalOr – pixel-wise logical ‘OR’ operation.   

Table 6.5.  Confusion matrices for the test set using the best individuals found in the first two 
experiments shown in Table 6.4. 

CC
Actual class BRDM2 D7 T62 None
BRDM2 118 1 4 1
D7 5 114 3 2
T62 5 1 61 0

LGP
Actual class BRDM2 D7 T62 None
BRDM2 97 3 22 2
D7 0 115 9 0
T62 1 0 66 0

Predicted class

Predicted class

 

Note that, commonly for genetic programming, not all input data (initial register 
contents) and not all intermediate results are utilized for the final decision making 
(e.g., the result of the cross-correlation operation (CrossCorrel) is not further 
processed).  

6.6 Summary 
In this chapter, we proposed a general evolutionary learning method that enables 
the learner to acquire knowledge from complex/structural examples by 
autonomously transforming the input representation.  The described formulation 
of feature construction addresses two important issues.  (1) The elementary 
operations give the learner an access to complex, structural input data that 
otherwise could not be directly used.  (2) By incorporating the feature synthesis 
into the learning loop, the learner searches for performance improvement by 
modifying the input representation. 

In experimental part, we provided an evidence for the possibility of solving, using 
the proposed approach, a demanding real-world task of visual learning.  The 
encouraging results for SAR object recognition have been obtained without 
recurring to means that are commonly used in conventional approaches to the 
design of recognition systems, such as resorting to the database of object models, 
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explicit estimation of object pose, hand-tuning of basic operations for a specific 
application, and, in particular, SAR-specific concepts or features like ‘scattering 
center’.  

Our approach learns in a fully automatic manner, and, therefore, at a little expense 
of human labor and expertise.  The learning process requires only training data 
that is usually easy to acquire, i.e. images and their class labels, and does not rely 
on domain-specific knowledge, using only general vision-related knowledge 
encoded in basic operations.  The objectivity of the learning process makes the 
results free from subjective flaws and biases, which the human-designed solutions 
are prone to. 

f1=20

Classifier

Initial register contents

Output:
recognition

BDRM2: 0.92
D7: 0.01
T62: 0.07

CrossCorrel

HiPass3x3

MorphClose

Logical Or

NormDiff

f2=173190

AbsDiff

PushROI X

Gaussian

 

Figure 6.7.  A fragment of synthesized processing graph of a selected best-of-run procedure 
evolved by means of cooperative coevolution, processing an exemplary image (only 4 of total 8 
registers are used by this procedure).   

The proposed method may be characterized as feature-based.  Compared to the 
model-based recognition approaches, there is no need for, possibly expensive, 
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matching an image with models from the database.  Thus, our synthesized 
recognition system attains high recognition speed during the runtime.  The 
average time required by the entire recognition process, starting from the raw 
image and ending up with the final recognition result, totaled 4.9 ms on the 
average, for a single 48×48 image and an LGP procedure composed of 18 
operations.  This time could be significantly reduced after re-implementing the 
synthesized system and, in particular, the classifier that is written in Java.  We 
claim that this impressive recognition speed makes our approach suitable for real-
time application.  

Since the task-related knowledge is not required, our approach is general and 
possibly applicable to other recognition tasks.  We claim that, therefore, a new 
paradigm for visual learning has been developed, that focuses on automatic 
learning of pattern analysis procedures composed of relatively simple, general-
purpose image processing and feature extraction building blocks, as opposed to 
the tendency of designing highly specialized procedures for particular recognition 
tasks. 

From machine learning viewpoint, this result is an outstanding argument in favor 
of CC for tackling complex learning problems.  The ability of coevolution to 
break up complex problems into subproblems without requiring explicit 
objectives/goals for them, offers an interesting research direction for ML, when 
complex learning tasks are involved.  
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Chapter 7 

Coevolution and Linear Genetic 
Programming for Recognition-
Further Extensions 

In this chapter, we provide further details and extend the approach presented in 
Chapter 6.  Given the training images, this general approach induces a 
sophisticated feature-based recognition system, by using cooperative coevolution 
and linear genetic programming for the procedural representation of feature 
extraction agents.  An extensive experimental evaluation, on the demanding real-
world task of object recognition in synthetic aperture radar (SAR) imagery, shows 
the competitiveness of the proposed approach with human-designed recognition 
systems. 

7.1   Introduction  
Most real-world learning tasks concerning visual information processing are 
inherently complex.  This complexity results not only from the large volume of 
data that one usually needs to process, but also from its spatial nature, information 
incompleteness, and, most of all, from the vast number of hypotheses that have to 
be considered in the learning process and the ‘ruggedness’ of the fitness 
landscape.  Therefore, the design of a visual learning algorithm mostly consists in 
modeling its capabilities so that it is effective in solving the problem.  To induce 
useful hypotheses on one hand and avoid overfitting to the training data on the 
other, some assumptions have to be made, concerning training data and 
hypothesis representation, known as inductive bias and representation bias, 
respectively.  In visual learning, these biases have to be augmented by an extra 
‘visual bias’, i.e., knowledge related to the visual nature of the information being 
subject to the learning process.  A part of that is general knowledge concerning 
vision (background knowledge, BK), for instance, basic concepts like pixel 
proximity, edges, regions, primitive features, etc.  However, usually a more 
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specific domain knowledge (DK) related to a particular task/application (e.g., 
fingerprint identification, face recognition, etc.) is also required.  Currently, most 
recognition methods make intense use of DK to attain a competitive performance 
level.  This is, however, a double-edged sword, as the more DK the method uses, 
the more specific it becomes and the less general and transferable is the 
knowledge it acquires.  The contribution of such over-specific methods to the 
overall body of knowledge is questionable.  

Therefore, in this chapter, we propose a general-purpose visual learning method 
that requires only BK and produces a complete recognition system that is able to 
classify objects in images.  To cope with the complexity of the recognition task, 
we break it down into components.  However, the ability to identify building 
blocks is a necessary, but not a sufficient, precondition for a successful learning 
task.  To enforce learning in each identified component, we need an evaluation 
function that spans over the space of all potential solutions and guides the learning 
process.  Unfortunately, when no a priori definition of module’s ‘desired output’ 
is available, this requirement is hard to meet.  This is why we propose to employ 
here cooperative coevolution [56], as it does not require the explicit specification 
of objectives for each component.  

7.2   Related Work and Contributions  
No general methodology has been developed so far that effectively automates the 
visual learning process.  Several methods have been reported in the literature; 
they include blackboard architecture, case-based reasoning, reinforcement 
learning, and automatic acquisition of models, to mention the most predominant.  
The paradigm of evolutionary computation (EC) has also found applications in 
image processing and analysis.  It has been found effective for its ability to 
perform global parallel search in high-dimensional search spaces and to resist the 
local optima problem.  However, in most approaches the learning is limited to 
parameter optimization.  Relatively few results have been reported [66, 53, 59, 
60], that perform visual learning in the deep sense, i.e., with a learner being able 
to synthesize and manipulate an entire recognition system. 

The major contribution of this chapter is a general method that, given only a set 
of training images, performs visual learning and yields a complete feature-based 
recognition system.  Its novelty consists mostly in (i) procedural representation 
of features for recognition, (ii) utilization of coevolutionary computation for 
induction of image representation, and (iii) a learning process that optimizes the 
image feature definitions, prior to classifier induction. 
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7.2.1   Coevolutionary Construction of Feature Extraction 
Procedures 
We pose visual learning as the search of the space of image representations (sets 
of features).  For this purpose, we propose to use cooperative coevolution (CC) 
[56], which, besides being appealing from the theoretical viewpoint, has been 
reported to yield interesting results in some experiments [61].  In CC, one 
maintains many populations, with individuals in populations encoding only a part 
of the solution to the problem.  To undergo evaluation, individuals have to be 
(temporarily) combined with individuals from the remaining populations to form 
an organism (solution).  This joint evaluation scheme forces the populations to 
cooperate.  Except for this evaluation step, other steps of evolutionary algorithm 
proceed in each population independently.  

According to Wolpert’s ‘No Free Lunch’ theorem [63], the choice of this 
particular search method is irrelevant, as the average performance of any 
metaheuristic search over a set of all possible fitness functions is the same.  In the 
real world, however, not all fitness functions are equally probable.  Most real-
world problems are characterized by some features that make them specific.  The 
practical utility of a search/learning algorithm depends, therefore, on its ability to 
detect and benefit from those features.  

The high complexity and decomposable nature of the visual learning task are 
such features.  Cooperative coevolution seems to fit them well, as it provides the 
possibility of breaking up a complex problem into components without specifying 
explicitly the objectives for them.  The manner in which the individuals from 
populations cooperate emerges as the evolution proceeds.  In our opinion, this 
makes CC especially appealing to the problem of visual learning, where the 
overall object recognition task is well defined, but there is no a priori knowledge 
about what should be expected at intermediate stages of processing, or such 
knowledge requires an extra effort from the designer.  

In [44], we provide experimental evidence for the superiority of CC-based 
feature construction over standard EC approach in the standard machine learning 
setting; here, we extend this idea to visual learning. Following the feature-based 
recognition paradigm, we split the object recognition process into two modules:  
feature extraction and decision-making.  The algorithm learns from a finite 
training set of examples (images) D in a supervised manner, i.e. requires D to be 
partitioned into finite number of pairwise disjoint decision classes Di.  

In the coevolutionary run, n populations cooperate in the task of building the 
complete image representation, with each population responsible for evolving one 
component.  Therefore, the cooperation here may be characterized as taking place 
at the feature level.  In particular, each individual I from a given population 
encode a single feature extraction procedure.  For clarity, details of this encoding 
are provided in Section 7.4.  
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Figure 1.  The evaluation of an individual Ii from ith population. 

The coevolutionary search proceeds in all populations independently, except for 
the evaluation phase, shown in Figure 1.  To evaluate an individual Ij from 
population #j, we first provide for the remaining part of the representation.  For 
this purpose, representatives *

iI  are selected from all the remaining populations 

i≠j.  A representative *
iI  of ith population is defined here in a way that has been 

reported to work best [61]:  it is the best individual w.r.t. the previous evaluation.  
In the first generation of evolutionary run, since no prior evaluation data is given, 
it is a randomly chosen individual. 

Subsequently, Ij is temporarily combined with representatives of all the remaining 
populations to form an organism 

**
1

*
1

*
1 ,,,,,, njjj IIIIIO KK +−= . (7.1) 

Then, the feature extraction procedures encoded by individuals from O are ‘run’ 
(see Section 7.4) for all images X from the training set D.  The feature values y 
computed by them are concatenated, building the compound feature vector Y:   

),(,),,(),,(),,(,),,()( **
1

*
1

*
1 XIXIXIXIXIX njjj yyyyyY KK +−= . (7.2) 

Feature vectors Y(X), computed for all training images X∈D, together with the 
images’ decision class labels constitute the dataset:   

},:),({ ii DDXiX ∀∈∀Y  (7.3) 

Finally, cross-validation, i.e. multiple train-and-test procedure is carried out on 
these data.  For the sake of speed, we use here a fast classifier Cfit that is usually 
much simpler than the classifier used in the final recognition system.  The 
resulting predictive recognition ratio (see equation 4) becomes the evaluation of 
the organism O, which is subsequently assigned as the fitness value to f ( ) the 
individual Ij, concluding its evaluation process:   
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(7.4) 

where card() denotes cardinality of a set.  Using this evaluation procedure, the 
coevolutionary search proceeds until some stopping criterion (usually considering 
computation time) is met.  The final outcome of the coevolutionary run is the best 
found organism/representation O*.  

7.2.2   Representation of Feature Extraction Procedures 
For representing the feature extraction procedures as individuals in the 
evolutionary process, we adopt a variety of Linear Genetic Programming (LGP) 
[43], a hybrid of genetic algorithms (GA) and genetic programming (GP).  The 
individual’s genome is a fixed-length string of bytes, representing a sequential 
program composed of (possibly parameterized) basic operations that work on 
images and scalar data.  This representation combines advantages of both GP and 
GA, being both procedural and more resistant to the destructive effect of 
crossover that may occur in ‘regular’ GP [43]. 

A feature extraction procedure accepts an image X as input and yields a vector y 
of scalar values as the result.  Its operations are effectively calls to image 
processing and feature extraction functions.  They work on registers, and may use 
them for both input as well as output arguments.  Image registers store processed 
images, whereas real-number registers keep intermediate scalar results features.  
Each image register has single channel (grayscale), the same dimensions as the 
input image X, and maintains a rectangular mask that, when used by an operation, 
limits the processing to its area.  For simplicity, the numbers of both types of 
registers are controlled by the same parameter m.  

Each chunk of four consecutive bytes in the genome encodes a single operation 
with the following components:   

(a)  operation code, 

(b)  mask flag – decides whether the operation should be global (work on the 
entire image) or local (limited to the mask), 

(c)  mask dimensions (ignored if the mask flag is ‘off’), 

(d)  arguments: references to registers to fetch input data and store the result. 
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Figure 7.2.  Execution of LGP code  contained in individual’s I genome (for a single image X). 

Figure 7.2 shows the execution at the moment of executing the following 
operation:  morphological opening (a), applied locally (b) to the mask of size 
14×14 (c) to the image fetched from image register pointed by argument #1, and 
storing the result in image register pointed by argument #2 (d).  There are 
currently 70 operations implemented in the system.  They mostly consist of calls 
to functions from Intel Image Processing and OpenCV libraries, and encompass 
image processing, mask-related operations, feature extraction, and arithmetic and 
logic operations. 

The processing of a single input image X ∈ D by the LGP procedure encoded in 
an individual I proceeds as follows (Figure 7.2):   

1. Initialization:  Each of the m image registers is set to X.  The masks of images 
are set to the m most distinctive local features (here: bright ‘blobs’) found in the 
image.  Real-number registers are set to the center coordinates of corresponding 
masks. 

2. Execution:  the operations encoded by I are carried out one by one, with 
intermediate results stored in registers. 

3. Interpretation:  the scalar values yj(I,X), j=1,…,m, contained in the m real-value 
registers are interpreted as the output yielded by I for image X.  The values are 
gathered to form an individual’s output vector  

),(,),,(),( 1 XIyXIyXI mK=y , (7.5) 

that is subject to further processing described in Section 7.3.  
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7.2.3   Architecture of the Recognition System 
The overall recognition system consists of:  (i) the best feature extraction 
procedures O* constructed using the approach described in Sections 7.3 and 7.4, 
and (ii) classifiers trained using those features.  

We incorporate a multi-agent methodology that aims to compensate for the 
suboptimal character of representations elaborated by the evolutionary process 
and allows us to boost the overall performance.  

 

Recognition subsystem #nsub

Recognition subsystem #2

Input
image

X

Recognition subsystem #1

Classifier
C

Synthesized 
representation O*

Y(X) C(Y(X))
Voting

Final
decision

…

 

Figure 7.3.  The top-level architecture of recognition system. 

The basic prerequisite for the agents’ fusion to become beneficial is their 
diversification.  This may be ensured by using homogenous agents with different 
parameter settings, homogenous agents with different training data (e.g., bagging 
[65]), heterogeneous agents, etc.  Here, the diversification is naturally provided by 
the random nature of the genetic search.  In particular, we run many genetic 
searches that start from different initial states (initial populations).  The best 
representation O* evolved in each run becomes a part of a single subsystem in the 
recognition system’s architecture (see Figure 7.3).  Each subsystem has two major 
components: (i) a representation O*, and (ii) a classifier C trained using that 
representation.  As this classifier training is done once per subsystem, a more 
sophisticated classifier C may be used here (as compared to the classifier Cfit used 
in the evaluation function).  

The subsystems process the input image X independently and output recognition 
decisions that are further aggregated by a simple majority voting procedure into 
the final decision.  The subsystems are therefore homogenous as far as the 
structure is concerned; they only differ in the features extracted from the input 
image and the decisions made.  The number of subsystems nsub is a parameter set 
by the designer. 

7.3   Experimental Results 
The primary objective of the computational experiment is to test the scalability of 
the approach with respect to the number of decision classes and its sensitivity to 
various types of object distortions.  As an experimental testbed, we choose the 
demanding task of object recognition in synthetic aperture radar (SAR) images.  
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There are several difficulties that make recognition in this modality extremely 
hard:  

• poor visibility of objects – usually only prominent scattering centers are visible, 

• low persistence of features under rotation, and 

• high levels of noise. 

The data source is the MSTAR public database [58] containing real images of 
several objects taken at different azimuths and at 1-foot spatial resolution.  From 
the original complex (2-channel) SAR images, we extract the magnitude 
component and crop it to 48×48 pixels.  No other form of preprocessing is 
applied. 

 

ZSU 23/4

BRDM ZIL131

T72#A04
 

Figure 7.4.  Selected objects and their SAR images used in the learning experiment. 

The following parameter settings are used for each coevolutionary run: number of 
subsystems nsub:  10; classifier Cfit used for feature set evaluation: decision tree 
inducer C4.5 [63]; mutation operator: one-point, probability 0.1; crossover 
operator:  one-point, probability 1.0, cutting allowed at every point; selection 
operator: tournament selection with tournament pool size = 5; number of registers 
(image and numeric) m:  2; number of populations n:  4; genome length:  40 bytes 
(10 operations); single population size:  200 individuals; time limit for 
evolutionary search:  4000 seconds (Pentium PC 1.4 GHz processor).  

A compound classifier C is used to boost the recognition performance.  In 
particular, C implements the ‘1-vs.-all’ scheme, i.e. it is composed of l base 
classifiers (where l is the number of decision classes), each of them working as a 
binary (two-class) discriminator between a single decision class and all the 
remaining classes.  To aggregate their outputs, a simple decision rule is used that 
yields final class assignment only if the base classifiers are consistent and indicate 
a single decision class.  With this strict rule, any inconsistency among the base 
classifiers (i.e., no class indicated or more than one class indicated) disables 
univocal decision and the example remains unclassified (assigned to ‘No 
decision’ category).  
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The system’s performance is measured using different base classifiers (if not 
stated otherwise, the classifier uses default parameter settings as specified in 
[62]):  

• support vector machine with polynomial kernels of degree 3 (trained using 
sequential minimal optimization algorithm [68] with complexity parameter set 
to 10), 

• nonlinear neural networks with sigmoidal units trained using backpropagation 
algorithm with momentum, 

• C4.5 decision tree inducer [69]. 

7.3.1 Scalability 

To investigate the scalability of the proposed approach w.r.t. to the problem size, 
we use several datasets with increasing numbers of decision classes for a 15-deg. 
depression angle, starting from l=2 decision classes:  BRDM2 and ZSU.  
Consecutive problems are created by adding the decision classes up to l=8 in the 
following order:  T62, Zil131, a variant A04 of T72 (T72#A04 in short), 2S1, 
BMP2#9563, and BTR70#C71.   

For ith decision class, its representation Di in the training data D consists of two 
subsets of images sampled uniformly from the original MSTAR database with 
respect to a 6-degree azimuth step.  Training set D, therefore, always contains 
2*(360/6)=120 images from each decision class, so its total size is 120*l.  The 
corresponding test set T contains all the remaining images (for a given object and 
elevation angle) from the original MSTAR collection.  In this way, the training 
and test sets are strictly disjoint.  Moreover, the learning task is well represented 
by the training set as far as the azimuth is concerned.  Therefore, there is no need 
for multiple train-and-test procedures here and the results presented in the 
following all use this single particular partitioning of MSTAR data.  

Let nc, ne, and nu, denote respectively the numbers of test objects correctly 
classified, erroneously classified, and unclassified by the recognition system.  
Figure 7.5(a) presents the true positive rate, i.e. Ptp=nc/(nc+ne+nu), also known as 
probability of correct identification (PCI), as a function of the number of decision 
classes.  It can be observed, that the scalability depends heavily on the base 
classifier, and that SVM clearly outperforms its rivals.  For this base classifier, as 
new decision classes are added to the problem, the recognition performance 
gradually decreases.  The major drop-offs occur when T72 tank and 2S1 self-
propelled gun (classes 5 and 6, respectively), are added to the training data; this is 
probably due to the fact that these objects are visually similar to each other (e.g., 
both have gun turrets) and significantly resemble the T62 tank (class 3).  On the 
contrary, introducing consecutive classes 7 and 8 (BMP2 and BTR60) did not 
affect the performance much; more than this, an improvement of accuracy is even 
observable for class 7. 
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Figure 7.5.  (a) Test set recognition ratio as a function of number of decision classes.  (b) ROC 
curves for different number of decision classes (base classifier:  SVM). 

Figure 7.5(b) shows the receiver operating characteristics (ROC) curves 
obtained, for the recognition systems using SVM as a base classifier, by 
modifying the confidence threshold that controls whether the classifier votes.  The 
false positive rate is defined here as Pfp=ne/(nc+ne+nu).  Again, the results support 
our method:  the curves do not drop rapidly as the false positive rate decreases.  
Therefore, very high accuracy of classification, i.e., nc/(nc+ne), may be obtained 
when accepting a reasonable rejection rate nu/(nc+ne+nu).  For instance, for 4 
decision classes, when Pfp=0.008, Ptp=0.885 (see marked point in Figure 7.5(b)), 
and, therefore, rejection rate is 1-(Pfp+Ptp)=0.107, the accuracy of classification 
equals 0.991.  

7.3.2 Object variants 

A desirable property of an object recognition system is its ability to recognize 
different variants of the same object.  This task may pose some difficulties, as 
configurations of vehicles often vary significantly.  To provide a comparison with 
human-designed recognition system, we use the conditions of the experiment 
reported in [64].  In particular, we synthesized recognition systems using:   

• 2 objects:  MP2#C21, T72#132,  

• 4 objects:  MP2#C21, T72#132, BTR70#C71, and ZSU23/4. 

For both of these cases, the testing set includes two other variants of BMP2 
(#9563 and #9566), and two other variants of T72 (#812 and #s7). 

The results of the test set evaluation shown in the confusion matrices (Table 7.1) 
suggest that, even when the recognized objects differ significantly from the 
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models provided in the training data, the approach is still able to maintain high 
performance.  Here the true positive rate Ptp equals 0.804 and 0.793, for 2- and 4-
class systems, respectively.  For the cases where a decision can be made (83.3% 
and 89.2%, respectively), the values of classification accuracy, 0.966 and 0.940, 
respectively, are comparable to the forced recognition results of the human-
designed recognition algorithms reported in [64], which are 0.958 and 0.942, 
respectively.  Note that in the test, we have not used ‘confusers’, i.e. test images 
from different classes that those present in the training set, as opposed to [64], 
where BRDM2 armored personnel carrier has been used for that purpose. 

Table 7.1.  Confusion matrices for recognition of object variants. 

BMP2 T72 No BMP2 T72 BTR ZSU No
Object Serial # [#C21] [#132] decision [#C21] [#132] [#C71] [#d08] decision
BMP2 [#9563,9566] 295 18 78 293 27 27 1 43

T72 [#812,s7] 4 330 52 12 323 1 9 41

Test objects
2-class system

Predicted class 
4-class system
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Figure 7.6.  Processing carried out by one of the evolved procedures shown as a graph (small 
rectangles in images depict masks; boxes: local operations; rounded boxes: global operations). 
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7.4   Summary 
In this contribution, we provide experimental evidence for the possibility of 
synthesizing, without or with little human intervention, a feature-based 
recognition system, which recognizes 3D objects at the performance level that can 
be comparable to handcrafted solutions.  Let us emphasize that these encouraging 
results are obtained in the demanding field of SAR imagery, where the acquired 
images only roughly depict the underlying 3D structure of the object. 

There are several major factors that contribute to the overall high performance of 
the approach.  First of all, the paradigm of coevolution allows us to decompose 
the task of representation (feature set) construction into several semi-independent, 
cooperating subtasks.  In this way, we exploit the inherent modularity of the 
learning process, without the need of specifying explicit objectives for each 
developed feature extraction procedure.  Secondly, the approach manipulates 
LGP-encoded feature extraction procedures, as opposed to most approaches, 
which are usually limited to learning meant as parameter optimization.  This 
allows for learning sophisticated features, which are novel and sometimes very 
different from expert’s intuition, as may be seen from example shown in Figure 
7.6.  And thirdly, the fusion at feature and decision level helps us to aggregate 
sometimes contradictory information sources and build a recognition system that 
is comparable to human-designed system performance with a bunch of simple 
components at hand.  

 
 
 



Chapter 8:  Conclusions 

 131 

Chapter 8  

Conclusions 

This report investigates the efficacy of evolutionary computation such as genetic 
programming, genetic algorithms and linear genetic programming in learning and 
selecting features for object detection and object recognition.  The reason for 
incorporating learning into object detection and recognition is to avoid the time 
consuming process of feature generation and selection.  With learning 
incorporated, an object detection and recognition system  

(a) can automatically explore many unconventional features that may yield 
exceptionally good detection and recognition performances in some cases, thus, 
overcoming human expert limitation of concentrating only on a small number of 
conventional features; and  

(b) becomes more flexible and is able to automatically generate features on the fly 
particularly effective to the type of objects and images encountered.   

The ultimate goal is to lower the cost of designing object detection and 
recognition systems and build more robust and flexible systems with human-
competitive performance. 

The key contributions of this research are: 

• We investigate the effectiveness of genetic programming in synthesizing 
composite operators and composite features for object detection.  We show 
that GP is effective in synthesizing composite operators based on domain-
independent primitive operators and domain-independent primitive feature 
images that can be easily generated from the original image for object 
detection.  The synthesized composite operators can be applied to other testing 
images similar to the training image.  The composite features learned by GP 
are much more effective than the human-designed primitive features from 
which they are built.  The GP learned composite features may not be imagined 
by human experts, since these unconventional features are very difficult, if not 
impossible, to be explained by human experts.  Thus, the learning method is 
of great help in the design of object detection and recognition systems. 

• We design an MDL-based fitness function and smart GP operators to improve 
the efficiency of genetic programming.  MDL-based fitness function is 
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proposed to address the well-known code bloat problem of GP.  The MDL-
based fitness function takes the size of a composite operator into the fitness 
evaluation process to prevent composite operators from growing too large 
without setting a hard limit on the size of a composite operator, imposing 
relatively less restrictions on the GP search and greatly improving the GP 
efficiency.  To further improve the efficiency of genetic programming, smart 
crossover and smart mutation are proposed to identify and prevent the 
effective components of composite operators from being disrupted by 
destructive crossover and mutation.  Also, a public library is set up to keep 
effective components for later reuse.  Compared to traditional genetic 
programming, the smart GP driven by the MDL-based fitness function and 
equipped with smart crossover and smart mutation synthesizes composite 
operators with better performance and smaller size, reducing the 
computational expense during recognition and the possibility of overfitting the 
training images. 

• We propose an MDL-based fitness function to drive GA in the selection of 
features for object detection and recognition.  The performance of the MDL-
based fitness function is compared with those of three other fitness functions.  
The MDL-based fitness function balances the number of feature selected and 
the recognition error rate very well and it is the best fitness function compared 
to other three functions used in the literature.  With fewer features selected, 
the computational expenses and the possibility of overfitting the training data 
are reduced. 

• We propose a coevolutionary genetic programming (CGP) approach to learn 
composite features for object recognition.  The knowledge about the problem 
domain is incorporated in primitive features that are used as terminals in the 
synthesis of composite features by CGP using domain independent primitive 
operators.  The motivation for using CGP is to overcome the limitations of 
human experts who consider only a small number of conventional 
combinations of primitive features during synthesis.  CGP, on the other hand, 
can try a very large number of unconventional combinations and these 
unconventional combinations yield exceptionally good results in some cases.  
Our experimental results with real synthetic aperture radar (SAR) images 
show that CGP can learn good composite features.  We show results to 
distinguish objects from clutter and to distinguish objects that belong to 
several classes. 

• We propose linear genetic programming in conjunction with cooperative 
coevolution for feature synthesis for object recognition.  General-purpose 
image processing/computer vision libraries are used for feature synthesis.  We 
show that coevolution is more efficient than genetic algorithms.  We consider 
various strategies for multi-class target recognition.  We consider cooperation 
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at various levels and show recognition results for eight classes of MSTAR 
dataset. 

In conclusion, evolutionary computation has a great promise and a strong 
potential to automate the design of target and pattern recognition systems and 
provide a human competitive performance. 
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